CMR: Với số tự nhiên n có 5 chữ số trừ đi tổng các chữ số của nó luôn là một số chia hết cho 9
Chứng minh rằng hiệu của một số tự nhiên bất kì trừ đi tổng các chữ số của nó là một số chia hết cho 9
Câu hỏi của Nguyễn Phương Chi - Toán lớp 6 - Học toán với OnlineMath
Tìm một số tự nhiên có hai chữ số biết lấy số tự nhiên cần tìm trừ đi tổng các chữ số của nó thì bằng tổng các chữ số của số trừ cộng với 24.
Nếu a+b là số có một chữ số thì ab- (a+b) = a+b+24 rút gọn được ax8 = b+24 suy ra ab = 30; hoặc ab = 48(loại vì a+b có hai chữ số). Trường hợp a+b có hai chữ số giả sử a+b =cd thì c phải là 1. vậy ta có: ab - (a+b)=1d+24 hay 9xa=1d+24. Ta thấy VT chia hết cho 9 nên Vp phải chia hết cho 9 vậy 1d=12. Vậy ta có a=4; a+ b =12 nên ab = 48. Vậy có các kết quả là 30 và 48
Tìm một số tự nhiên có hai chữ số biết lấy số tự nhiên cần tìm trừ đi tổng các chữ số của nó thì bằng tổng các chữ số của số trừ cộng với 24.
Nếu a+b là số có một chữ số thì ab- (a+b) = a+b+24 rút gọn được ax8 = b+24 suy ra ab = 30; hoặc ab = 48(loại vì a+b có hai chữ số).
Trường hợp a+b có hai chữ số giả sử a+b =cd thì c phải là 1.
vậy ta có: ab - (a+b)=1d+24 hay 9xa=1d+24.
Ta thấy VT chia hết cho 9 nên Vp phải chia hết cho 9 vậy 1d=12.
Vậy ta có a=4; a+ b =12 nên ab = 48.
Vậy có các kết quả là 30 và 48
1. tìm số tự nhiên n có hai chữ số, biết rằng 2n+1 và 3n+1 đều là các số chính phương.
2.tìm số tự nhiên có hai chữ số, biết rằng nếu nhân nó với 45 thì được một số chính phương.
3.a) Các số tự nhiên n và 2n có tổng các các chữ số bằng nhau. Chứng minh rằng n chia hết cho 9.
b)* tìm số chính phương n cá ba chữ số, biết rằng n chia hết cho 5 và nếu nhân n với 2 thì tổng các chữ số của nó không đổi.
3.a)n và 2n có tổng các chữ số bằng nhau => hiệu của chúng chia hết cho 9
mà 2n-n=n=>n chia hết cho 9 => đpcm
CMR trong 19 số tự nhiên bất kì luôn tìm được 1 số mà tổng các chữ số của nó chia hết cho 10
Bài 1 : Với 39 số tự nhiên liên tiếp hỏi rằng có thể tìm được 1 số mà tổng các chữ số của nó chia hết cho 11 hay không ?
Bài 2 : CMR trong 52 số tự nhiên , trí ít cũng có một cặp gồm 2 số sao cho tổng hoặc hiệu của chúng chia hết cho 100
Bài 3 : CMR có thể tìm được số tự nhiên K sao cho 1983^k - 1 chia hết cho 10^5
Tìm một số tự nhiên có hai chữ số đó bằng tổng bình phương các chữ số của nó trừ đi 11 và số đó cũng bằng hai lần tích hai chữ số của nó cộng với 5
ab
trong hệ tp ab=10a+b
theo bài có pt
10a+b=a^2+b^2-11
10a+b=2a.b+5
giải hệ trên
với 0<a<=9, 0<=b<=9
(1-2)=>(a-b)^2=16=>a-b=+-4
=>b=a+-4
thay vào (2)
10a+a+-4=2a^2+-8+5
2a^2-11a+-4+5=0
•2a^2-11a+1=0 loại a không nguyên
•2a^2-11a+9=0
a=(11+-7)/4
a=18/4 loại
a=1 nhận
b=5
đáp số
15
1. Chứng minh rằng tổng các số ghi trên vé xổ số có 6 chữ số mà tổng 3 chữ số đầu bằng tổng 3 chữ số cuối thì chia hết cho 13 ( các chữ số đầu có thể bằng không )
2. Tìm số abcd biết rằng số đó chia hết cho tích ab và cd
3. Chứng minh rằng trong tất cả các số tự nhiên khác nhau có 7 chữ số lập bởi cả 7 chữ số 1, 2, 3, 4, 5, 6, 7, không có 2 số nào mà một số chia hết chosố còn lại.
4. Cho 3 số nguyên tố lớn hơn 3, trong đó số sau lớn hơn số trước d đơn vị. Chứng minh rằng một số tự nhiên lớn hơn 3 nằm giữa hai số nguyên tố sinh đôi thì chia hết cho 6.
5. Hãy viết số 100 dưới dạng tổng các số lẽ lien tiếp.
6. Tìm số tự nhiên có 3 chữ số, biết rằng nó tăng gấp n lần nếu cộng mỗi chữ số của nó với n ( n là số tự nhiên, có thể gồm một hoặc nhiều chữ số ).
7. Tìm số tự nhiên x có chữ số tận cùng bằng 2, biết rằng x, 2x, 3x đều là các số có 3 chữ số và 9 chữ số của 3 số đó đều khác nhau và khác không.
8. Tìm số tự nhiên x có 6 chữ số, biết rằng các tích 2x, 3x, 4x, 5x, 6x cũng là số có 6 chữ số gồm cả 6 chữ số ấy.a. Cho biết 6 chữ số của số phải tìm là 1, 2, 4, 5, 7, 8.b. Giải bài toán nếu không cho điều kiện a.
9. Tìm số tự nhiên n lớn nhất để tích các số tự nhiên từ 1 đến 1000 chia hết cho 5n
Xem nội dung đầy đủ tại:http://123doc.org/document/2674306-tuyen-chon-toan-nang-cao-va-phat-trien-lop-6.htm
Tìm một số tự nhiên có hai chữ số biết số đó bằng tổng bình phương các chữ số của nó trừ đi 11 và số đó cũng bằng hai lần tích hai chữ số của nó cộng với 5
ab
trong hệ tp ab=10a+b
theo bài có pt
10a+b=a^2+b^2-11
10a+b=2a.b+5
giải hệ trên
với 0<a<=9, 0<=b<=9
(1-2)=>(a-b)^2=16=>a-b=+-4
=>b=a+-4
thay vào (2)
10a+a+-4=2a^2+-8+5
2a^2-11a+-4+5=0
•2a^2-11a+1=0 loại a không nguyên
•2a^2-11a+9=0
a=(11+-7)/4
a=18/4 loại
a=1 nhận
b=5
đáp số: 15