cho tam giác abc cân tại a, h là trung điểm của bc. i là hình chiếu vuông góc của h trên ac. o là trung điểm của hi. chứng minh bic đồng dẠNG với aoh
cho tam giác abc cân tại a, h là trung điểm của bc. gọi i là hình chiếu vuông góc của h trên ac. o là trung điểm của hi. chứng minh tam giác bic đồng dạng với tam giác aoh
Cho tam giác ABC cân tại A và H là trung điểm của BC, I là hình chiếu vuông góc của H trên AC và O là trung điểm của HI
a) Chứng minh: tam giác BIC đồng dạng tam giác AOH
b) Chứng minh: AO vuông góc với BI
cho tam giác abc cân tại a và h là trung điểm của bc. gọi i là hình chiếu vuông góc của h trên cạnh ac và o là trung điểm của hi.
a, chứng minh tam giác bic đồng dạng tam giác aoh
b, cm ao vuông góc bi
tam giác AHB đồng dạng với tam giác HCI ( g.g ) ( Bạn tự chứng minh )
\(\Rightarrow\frac{AH}{HI}=\frac{BH}{CI}\Rightarrow\frac{AH}{OH}=\frac{BC}{CI}\)
Suy ra tam giác BIC đồng dạng với tam giác AOH ( đpcm )
b) Qua H kẻ HE // BI
Ta cũng dễ chứng minh được OE // BC suy ra \(OE\perp AH\)
Suy ra tam giác AHE có trực tâm là O
Suy ra AO vuông góc với BI ( đpcm )
Làm ngắn thế Hiếu!
Bạn tự vẽ hình!!!
a) Hai tam giác vuông AHC và HIC có chung góc C nên chúng đồng dạng
\(\Delta AHC\approx\Delta HIC\Rightarrow\frac{HA}{HI}=\frac{HC}{IC}\)
\(\frac{HA}{2HO}=\frac{BC}{2IC}\Rightarrow\frac{HA}{HO}=\frac{BC}{IC}\left(1\right)\)
Mặt khác: \(\widehat{AHO}=\widehat{ICB}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\Delta BIC\approx\Delta AOH\left(c-g-c\right)\)
b) Gọi D là giao điểm của AH và BI , E là giao điểm của AO và BI
\(\Delta BIC\approx\Delta AOH\left(cmt\right)\Rightarrow\widehat{IBH}=\widehat{HAO}\)
Ta lại có: góc BDH = góc ADE (dđ) => IBH + BDH = HAO + ADE
Tam giác BHD vuông nên IBH + BDH=90 độ => HAO + ADE =90 độ => góc AED = 90 độ hay \(AO\perp BI\)
Cho tam giác ABC cân tại A. H là trung điểm của BC. Gọi I là hình chiếu vuông góc của H trên AC và O là trung điểm của HI. Cm:
a)HA.IC=HI.HC
b)Tam giác BIC đồng dạng với tam giác AOH
c)AO vuông góc với BI
a, tam giác AIH và tam giác HIC đều vuông tại I
tam giác ABC cân tại A ; H là trung điểm của BC (gt)
=> AH _|_ BC (đl) và AH là phân giác của góc BAC
=> góc BAH + góc ABC = 90 mà góc ABH = góc HAC
=> góc HAC + góc ABC = 90
tam giác ABC cân tại A => góc B = Góc C
có góc IHC + góc ACB = 90
=> gócIHC + góc ABC = 90
=> góc HAC = góc IHC
tam giác AIH và tam giác HIC đều vuông tại I
=>t am giác AIH ~ tam giác HIC
=> HA/HC = HI/IC
=> HA.IC = HC.HI
Cho tam giác ABC cân tại A. H là trung điểm của BC. Gọi I là hình chiếu vuông góc của H trên AC và O là trung điểm của HI. Chứng minh rằng: a) HA. IC = HI . HC b) tam giác BIC đồng dạng tam giácAOH c) AO vuông góc BI
Cho tam giác ABC cân tại A.H là trung điểm BC.Gọi I là hình chiếu vuông góc của H trên AC và O là trung điểm HI.Chứng minh rằng:
Tam giác BIC đồng dạng tam giác AOH
1,Cho hình thang ABCD(AB//CD),E là giao điểm 2 cạnh bên,F là giao điểm 2 đường chéo.Chứng minh: EF đi qua trung điểm 2 đáy
2,Cho tam giác ABC cân tại A. Điểm H là trung điểm cạnh BC. Gọi I là hình chiếu vuông góc của H trên cạnh AC và O là trung điểm của HI. Chứng minh: Tam giác BIC đồng dạng tam giác AOH
cho tam giác ABC cân tại A, đường trung tuyến AH (H thuộc BC). gọi I là hình chiếu của H trên AC
a. CM tam giác AIH đồng dạng tam giác AHC
b. CM: AH.BC= 2IH.AB
c. cho CI=9cm, AI=16cm. Tính AH và diện tích ABC
d. gọi O là trung điểm HI. CM tam giác BIC đồng dạng AOH
từ đó suy ra AO vuông góc BI
Cho tam giác ABC cân tại A, đường trung tuyến AH( H thuộc BC). Gọi I là hình chiếu của H trên AC.
a) Chứng minh AIH AHC
b) Chứng minh AH.BC= 2IH.AB
c) Cho CI = 9cm, AI = 16cm. Tính AH và diện tích của ABC
d) Gọi O là trung điểm của HI. Chứng minh BIC AOH từ đó suy ra AO vuông góc với BI
Ai giải giúp gấp giùm đi!!!
a/ Xét hai tg vuông AIH và AHC có ^HAC chung => AIH đồng dạng AHC
b/ Ta có
2.S(ABC)=AH.BC
2.S(AHC)=AH.CH
mà CH=BC/2
=> S(ABC)=2.S(AHC) => \(\frac{AH.BC}{2}=IH.AC\) mà AC=AB nên
\(\frac{AH.BC}{2}=IH.AB\Rightarrow AH.BC=2.IH.AB\)
c/ Ta có
\(AH^2=AI.AC=16.\left(16+9\right)=16.25=4^2.5^2=\left(4.5\right)^2=400\Rightarrow AH=20\)
\(HC^2=CI.AC=9.\left(9+16\right)=3^2.5^2=\left(3.5\right)^2=15^2\Rightarrow HC=15\Rightarrow BC=2.HC=30\)
\(S_{ABC}=\frac{AH.BC}{2}=\frac{20.30}{2}=300\)
d/