CMR: số A = abc +bca +cab không phải số chính phương .
CMR A= abc + bca + cab không phải là số chính phương
Cho S= abc + bca + cab CMR S không phải là số chính phương
chiu roi
ban oi
tk nhe@@@@@@@@@@@@@
xin do
ai tk minh minh tk lai
chiu roi
ban oi
tk nhe@@@@@@@@@@@
ai tk minh minh tk lai
Cho S = abc + bca + cab
Cmr S không phải là số chính phương
S=abc+bca+cab
= (1000a+10b+c) +(1000b+10c+a)+(1000c+10a+b)
= 1011*(a+b+c) =3*337*(a+b+c)
Do 3 & 337 là số nguyên tố, để S là số chính phương thì tổng a+b+c phải bằng 3*337 hoặc là (3*337)^(2n+1) (*)
Tuy nhiên do a,b,c<=9 => a+b+c<=27 nên không thể nào thỏa mãn (*)
Vậy không tồn tại số chính phương S
Cho S = \(\overline{abc}+\overline{bca}+\overline{cab}\). CMR S không phải là số chính phương
S = 100a+10b+c + 100b+10c+a + 100c+10a+b = 111(a+b+c) = 3.37(a+b+c)
=> Để S là số chính phương thì a+b+c = 3.37 = 111
mà 10 > a,b,c > 0 => Max(a+b+c) = 9+9+9 = 27 < 111
Vậy S không phải số chính phương
lưu ý điều kiện có a,b,c > 0 nên không thể cho S = 0 hay a+b+c = 0 là số chính phương khi và chỉ khi a=b=c=0
Chứng minh abc+bca+cab không phải là số chính phương
CMR tổng sau không là số chính phương : A = abc + bca + cab tìm số nguyên tố ab ( a > b > 0 ) sao cho ab - ba là số chính phương
1)
A= abc + bca + cab = 111a + 111b + 111c = 3 . 37 . ( a +b + c )
số chính phương phải chứa thừa số nguyên tố với số mũ chẵn, do đó a + b + c phải bằng 37k2 ( k \(\in\)N ) . điều này vô lý vì 3 \(\le\)a + b + c \(\le\)37
Vậy A không là số chính phương
2) ab - ba = ( 10a + b ) - ( 10b + a ) = 9a - 9b = 9 . ( a - b ) = 32 . ( a - b )
do ab - ba là số chính phương nên a - b là số chính phương
ta thấy 1 \(\le\)a - b \(\le\)8 nên a - b là số chính phương.ta thấy 1 \(\le\)a - b \(\le\)b nên a - b \(\in\){ 1 ; 4 }
với a - b = 1 thì ab \(\in\){ 21 ; 32 ; 43 ; 54 ; 65 ; 76 ; 87 ; 98 }
loại các hợp số 51 \(⋮\)3, 62 \(⋮\)2 ; 84 \(⋮\)2 ; 95 \(⋮\)5 còn 73 là số nguuyên tố,
Vậy ab bằng 43 hoặc 73. khi đó : 43 - 34 = 9 = 32
73 - 37 = 36 = 62
CMR: abc+bca+cab+ab+bc+ca không thể là số chính phương
Cho S= abc + bca + cab
CMR : S không phải số chính phương
Chú ý : abc = a.100 + b.10 + c
=> S=100a+10b+c+100b+10c+a+100c+10a+b
=> S=(100a+a+10a)+(10b+100b+b)+(c+10c+100c)
=> S=111a+111b+111c
=> S=111(a+b+c)
Vì a;b;c là số có 1 chưc số => a+b+c \(\le27\)
Mà 27<111 => S không thể nào là số chính phương
Chứng tỏ tổng sau không phải là số chính phương A=abc+bca+cab