Tìm tất cả các số nguyên x để
a)A=2/x+5 có giá trị nguyên
b)B=2x-3/x+1
giúp mình với ạ
cho biểu thức P = ( x/x+1 - 1/1-x + 1/1-x2): x-2/x2-1
a, tìm điều kiện xác định và rút gọn
b, tìm tất cả các giá trị nguyên của x để biểu thức P nhân giá trị nguyên, với x>2, tìm giá trị nhỏ nhất của P
giúp mình với ạ làm chi tiết giúp mình
a: ĐKXĐ: x∉{1;-1;2}
\(P=\left(\frac{x}{x+1}-\frac{1}{1-x}+\frac{1}{1-x^2}\right):\frac{x-2}{x^2-1}\)
\(=\left(\frac{x}{x+1}+\frac{1}{x-1}-\frac{1}{\left(x-1\right)\left(x+1\right)}\right)\cdot\frac{\left(x-1\right)\left(x+1\right)}{x-2}\)
\(=\frac{x\left(x-1\right)+x+1-1}{\left(x-1\right)\left(x+1\right)}\cdot\frac{\left(x-1\right)\left(x+1\right)}{x-2}\)
\(=\frac{x^2-x+x}{x-2}=\frac{x^2}{x-2}\)
b: Để P nguyên thì \(x^2\) ⋮x-2
=>\(x^2-4+4\) ⋮x-2
=>4⋮x-2
=>x-2∈{1;-1;2;-2;4;-4}
=>x∈{3;1;4;0;6;-2}
Kết hợp ĐKXĐ, ta được: x∈{3;4;0;6;-2}
c: \(P=\frac{x^2}{x-2}\)
\(=\frac{x^2-4+4}{x-2}=x+2+\frac{4}{x-2}=x-2+\frac{4}{x-2}+4\ge2\cdot\sqrt{\left(x-2\right)\cdot\frac{4}{x-2}}+4\)
=>P>=2*2+4=8
Dấu '=' xảy ra khi \(\left(x-2\right)^2=4\)
=>x-2=2
=>x=4(nhận)
giúp mik vs ạ
A=\(\dfrac{x^2+x+1}{1-x^3}+\left(\dfrac{x}{x^2-2x+1}+\dfrac{x}{1-x^2}\right)\cdot\dfrac{x^2-1}{x^2+1}\)
với x≠ 1,x≠-1
a) rút gọn biểu thức A
b) Tìm tất cả các giá trị của x để biểu thức A2 nhận giá trị nguyên
a: Ta có: \(\frac{x}{x^2-2x+1}+\frac{x}{1-x^2}\)
\(=\frac{x}{\left(x-1\right)^2}-\frac{x}{\left(x-1\right)\left(x+1\right)}\)
\(=\frac{x\left(x+1\right)-x\left(x-1\right)}{\left(x-1\right)^2\cdot\left(x+1\right)}=\frac{x^2+x-x^2+x}{\left(x-1\right)^2\cdot\left(x+1\right)}=\frac{2x}{\left(x-1\right)^2\cdot\left(x+1\right)}\)
Ta có: \(A=\frac{x^2+x+1}{1-x^3}+\left(\frac{x}{x^2-2x+1}+\frac{x}{1-x^2}\right)\cdot\frac{x^2-1}{x^2+1}\)
\(=\frac{x^2+x+1}{\left(1-x\right)\left(x^2+x+1\right)}+\frac{2x}{\left(x-1\right)^2\cdot\left(x+1\right)}\cdot\frac{\left(x-1\right)\left(x+1\right)}{x^2+1}\)
\(=\frac{1}{1-x}+\frac{2x}{\left(x-1\right)\left(x^2+1\right)}=\frac{-x^2-1+2x}{\left(x-1\right)\left(x^2+1\right)}=\frac{-\left(x-1\right)^2}{\left(x-1\right)\left(x^2+1\right)}=\frac{-\left(x-1\right)}{x^2+1}\)
tìm tất cả các giá trị nguyên của x để các phân số sau có giá chị nguyên
a) 2 / x+3
b) 2x+1 / 5
c) x-5 / x-2
d) 4x+10 / x+2
tim tất cả các số nguyên x để các phân số sau đó có giá trị là số nguyên
a/ A=x+1/x-2
b/B=2x-1/x+5
a) Giải:
Để A có giá trị là số nguyên thì \(x+1⋮x-2\)
Ta có:
\(x+1⋮x-2\)
\(\Rightarrow\left(x-2\right)+3⋮x-2\)
\(\Rightarrow3⋮x-2\)
\(\Rightarrow x-2\in\left\{\pm1;\pm3\right\}\)
+) \(x-2=1\Rightarrow x=3\)
+) \(x-2=-1\Rightarrow x=1\)
+) \(x-2=3\Rightarrow x=5\)
+) \(x-2=-3\Rightarrow x=-1\)
Vậy \(x\in\left\{3;1;5;-1\right\}\)
b) Để B có giá trị nguyên thì \(2x-1⋮x+5\)
Ta có:
\(2x-1⋮x+5\)
\(\Rightarrow\left(2x+10\right)-9⋮x+5\)
\(\Rightarrow2.\left(x-5\right)-9⋮x+5\)
\(\Rightarrow-9⋮x+5\)
\(\Rightarrow x+5\in\left\{\pm1;\pm3;\pm9\right\}\)
+) \(x+5=1\Rightarrow x=-4\)
+) \(x+5=-1\Rightarrow x=-6\)
+) \(x+5=3\Rightarrow x=-2\)
+) \(x+5=-3\Rightarrow x=-8\)
+) \(x+5=9\Rightarrow x=4\)
+) \(x+5=-9\Rightarrow x=-14\)
Vậy \(x\in\left\{-4;-;-2;-8;4;-14\right\}\)
tìm tất cả các số nguyên x để các phân số sau có giá trị là số nguyên:
a) A=2x-1 / x+5 (x khác -5)
b) B= 10x-9 / 2x-3
c) C= x-2 / 2x-3
d) D= 3x-4 / 2x-3
các bạn giải đc câu nào thì giải nhé không nhất thiết làm hết đâu. mình cần tham khảo câu trả lời của các bạn. thanks nhìu.
Cho phân số m = x 3 phần x - 2 a Tìm tất cả các số nguyên X để m có giá trị nguyên b tìm tất cả các số nguyên X để
Tìm tất cả các số nguyên x đẻ cac sphaan số sau có giá trị là số nguyên:
A= x+1/x-2 ( x khác 2)
B= 2x-1/ x+5( x khác -5 )
Bài 1:Tìm tất cả các số nguyên x để các phân số sau có giá trị là số nguyên
a,\(A=\frac{x+1}{x-2}\left(x\ne2\right)\)
b,\(B=\frac{2x-1}{x+5}\left(x\ne-5\right)\)
a, Để phân số đạt giá trị nguyễn
\(\Rightarrow x+1⋮x-2\)
\(\Rightarrow x-2+3⋮x-2\)
mà \(x-2⋮x-2\Rightarrow3⋮x-2\)
\(\Rightarrow x-2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Rightarrow x\in\left\{3;5\pm1\right\}\)
b,Tương tự :
\(2x-1⋮x+5\)
\(\Rightarrow2x+10-11⋮x+5\)
\(2\left(x+5\right)-11⋮x+5\)
mà \(2\left(x+5\right)⋮x+5\Rightarrow11⋮x+5\)
\(\Rightarrow x+5\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
\(x\in\left\{-4;\pm6;-16\right\}\)
a, Để \(A\in Z\)\(\Leftrightarrow x+1⋮x-2\)\
Ta có: \(\hept{\begin{cases}x-2⋮x-2\\x+1⋮x-2^{ }_{ }\end{cases}}\) \(\Rightarrow\) \(x-2-\left(x+1\right)⋮x-2\)
\(\Rightarrow-3⋮x-2\)mà \(x\in Z\Rightarrow x-2\in Z\Rightarrow x-2\inƯ\left(-3\right)\)\(\in\left(1;-1,3;-3\right)\)
\(x\in\left(3;1;5;-1\right)\)Vậy: \(x\in\left(1;3;5;-1\right)\)thì \(A\in Z\)
Cho A = (x^3+2x^2-1)/(x^3+2x^2+2x+1)
Rút gọn A và tìm tất cả số nguyên x để A có giá trị nguyên.
ĐKXĐ x khac -1\(A=\frac{x^3+2x^2-1}{x^3+2x^2+2x+1}=\frac{x^3+x^2+x^2+x-x-1}{x^3+x^2+x^2+x+x+1}=\frac{x^2\left(x+1\right)+x\left(x+1\right)-\left(x+1\right)}{x^2\left(x+1\right)+x\left(x+1\right)+\left(x+1\right)}=\frac{\left(x+1\right)\left(x^2+x-1\right)}{\left(x+1\right)\left(x^2+x+1\right)}=\frac{x^2+x-1}{x^2+x+1}\)
\(ta.coA=\frac{x^2+x-1}{x^2+x+1}=\frac{x^2+x+1-2}{x^2+x+1}=1-\frac{2}{x^2+x+1}\)
Để A \(\in Z\Leftrightarrow\frac{2}{x^2+x+1}\in Z\Rightarrow x^2+x+1\inƯ\left(2\right)\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\in\left\{\pm1;\pm2\right\}\)
giải ra ta được \(x=0,x=-1\)(t/m)