Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Minh Thư
Xem chi tiết
lê ruby anna
Xem chi tiết
Phùng Minh Quân
25 tháng 4 2018 lúc 12:55

Ta có : 

\(A=100\left(1+\frac{5}{6}+\frac{11}{12}+\frac{19}{20}+...+\frac{9899}{9900}\right)\)

\(A=100\left(1+\frac{6-1}{6}+\frac{12-1}{12}+\frac{20-1}{20}+...+\frac{9900-1}{9900}\right)\)

\(A=100\left(1+\frac{6}{6}-\frac{1}{6}+\frac{12}{12}-\frac{1}{12}+\frac{20}{20}-\frac{1}{20}+...+\frac{9900}{9900}-\frac{1}{9900}\right)\)

\(A=100\left(1+1-\frac{1}{6}+1-\frac{1}{12}+1-\frac{1}{20}+...+1-\frac{1}{9900}\right)\)

\(\frac{A}{100}=1+1-\frac{1}{6}+1-\frac{1}{12}+1-\frac{1}{20}+...+1-\frac{1}{9900}\)

\(\frac{A}{100}=\left(1+1+1+1+...+1\right)-\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{9900}\right)\)

\(\frac{A}{100}=\left(1+1+1+1+...+1\right)-\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\right)\)

\(\frac{A}{100}=\left(1+1+1+1+...+1\right)-\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\right)\)

\(\frac{A}{100}=\left(1+1+1+1+...+1\right)-\left(\frac{1}{2}-\frac{1}{100}\right)\)

Do từ \(2\) đến \(99\) có \(99-2+1=98\) số nên có \(98\) số \(1\) suy ra : 

\(\frac{A}{100}=98-\left(\frac{1}{2}-\frac{1}{100}\right)\)

\(\frac{A}{100}=98-\frac{49}{100}\)

\(\frac{A}{100}=\frac{9751}{100}\)

\(A=\frac{9751}{100}.100\)

\(A=9751\)

Vậy \(A=9751\)

Chúc bạn học tốt ~ 

Nguyễn Phong Doanh
Xem chi tiết
trần khánh thy
Xem chi tiết
PHO PHAM DINH
8 tháng 5 2017 lúc 21:47

A= ​​\(\frac{1}{1.2}\)+\(\frac{1}{2.3}\)+...+\(\frac{1}{2005.2006}\)\(\frac{1}{1}\)-\(\frac{1}{2}\)+\(\frac{1}{2}\)-\(\frac{1}{3}\)+...+\(\frac{1}{2005}\)-\(\frac{1}{2006}\)=

= 1-\(\frac{1}{2006}\)\(\frac{2005}{2006}\)

Trịnh Thành Công
8 tháng 5 2017 lúc 21:54

a)Ta có:\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2005.2006}\)

\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2005}-\frac{1}{2006}\)

\(\Rightarrow A=\frac{2005}{2006}\)

b)Ta có:\(\frac{2005}{2006}-1=-\frac{1}{2006}\)

        Vì \(\frac{2005}{2006}\) trừ 1 được một số âm thì chứng tỏ \(\frac{2005}{2006}\)<1

Vậy A<1

Edogawa Conan
9 tháng 5 2017 lúc 4:29

Ta co " A = 1/1,2 + 1/2,3 + ... + 1/2005,2006

>=< :  A = 1 - 1/2 + 1/2 -1/3 + ... + 1/2005 - 1/2006

<+=> :" A = 2005/2006

Ta co : 2005 /2006 - 1 = 1/2006

= 2005/2006 trí 1 một số âm thì chứng tỏ : 2005/2006 < 1

+<+> : vẬY a < 1

Vũ Tường Minh
Xem chi tiết
Nguyễn Hưng Phát
18 tháng 3 2018 lúc 20:36

Bài 1:\(A=1-\frac{1}{2}+1-\frac{1}{6}+.......+1-\frac{1}{9900}\)

\(=1-\frac{1}{1.2}+1-\frac{1}{2.3}+........+1-\frac{1}{99.100}\)

\(=99-\left(\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{99.100}\right)=99-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{99}-\frac{1}{100}\right)\)

\(=99-\left(1-\frac{1}{100}\right)=99-\frac{99}{100}=\frac{9801}{100}\)

Bài 2:\(A=\frac{1}{299}.\left(\frac{299}{1.300}+\frac{299}{2.301}+.........+\frac{299}{101.400}\right)\)

\(=\frac{1}{299}.\left(1-\frac{1}{300}+\frac{1}{2}-\frac{1}{301}+.........+\frac{1}{101}-\frac{1}{400}\right)\)

\(=\frac{1}{299}.\left(1+\frac{1}{2}+......+\frac{1}{101}-\frac{1}{300}-\frac{1}{301}-.......-\frac{1}{400}\right)\)

\(=\frac{1}{299}.\left[\left(1+\frac{1}{2}+.......+\frac{1}{101}\right)-\left(\frac{1}{300}+\frac{1}{301}+......+\frac{1}{400}\right)\right]\)(đpcm)

ST
18 tháng 3 2018 lúc 20:41

1/

\(=\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{6}\right)+...+\left(1-\frac{1}{9900}\right)\)

\(=\left(1+1+...+1\right)\left(50so\right)-\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{9900}\right)\)

\(=50-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\right)\)

\(=50-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)\)

\(=50-\left(1-\frac{1}{100}\right)=49+\frac{1}{100}=\frac{4901}{100}\)

2/ 

\(=\frac{1}{299}\left(\frac{299}{1.300}+\frac{299}{2.301}+...+\frac{299}{101.400}\right)\)

\(=\frac{1}{299}\left(1-\frac{1}{300}+\frac{1}{2}-\frac{1}{301}+...+\frac{1}{101}-\frac{1}{400}\right)\)

\(=\frac{1}{299}\left[\left(1+\frac{1}{2}+...+\frac{1}{101}\right)-\left(\frac{1}{300}+\frac{1}{301}+...+\frac{1}{400}\right)\right]\)

ST
18 tháng 3 2018 lúc 20:42

câu 1 bảo binfhd dúng nhé

Duy Gaming Youtube
Xem chi tiết
Duy Gaming Youtube
2 tháng 9 2020 lúc 10:42

Mấy câu như này tách ra kiểu gì?

Khách vãng lai đã xóa
Thảo
2 tháng 9 2020 lúc 11:59

\(\frac{5}{12}+\frac{5}{20}+\frac{5}{30}+...+\frac{5}{9900}=\frac{5}{3.4}+\frac{5}{4.5}+\frac{5}{5.6}+...+\frac{5}{99.100}\)

\(5\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\right)\)

\(5\left(\frac{1}{3}-\frac{1}{100}\right)=\frac{97}{60}\)

Khách vãng lai đã xóa
Thảo
2 tháng 9 2020 lúc 12:39

\(\frac{5}{6}+\frac{11}{12}+\frac{19}{20}+\frac{29}{30}+...+\frac{71}{72}+\frac{89}{90}=1-\frac{1}{6}+1-\frac{1}{12}+1-\frac{1}{20}+...+1-\frac{1}{90}\)

\(=8-\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{90}\right)\)

\(=8-\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\right)\)

\(=8-\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\right)\)

\(=8-\left(\frac{1}{2}-\frac{1}{10}\right)=8-\frac{2}{5}=\frac{38}{5}\)

Khách vãng lai đã xóa
Trần Kim Khánh
Xem chi tiết
Kaori Miyazono
3 tháng 5 2017 lúc 11:40

Hơi nhầm nè , để tôi sửa lại đề \(A=\frac{5}{6}+\frac{11}{12}+\frac{19}{20}+...+\frac{9899}{9900}\)

\(A=\left(1-\frac{1}{6}\right)+\left(1-\frac{1}{12}\right)+\left(1-\frac{1}{20}\right)+...+\left(1-\frac{1}{9900}\right)\)

\(A=1+1+1+...+1-\frac{1}{6}-\frac{1}{12}-\frac{1}{20}-....-\frac{1}{9900}\)

\(A=98-\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+....+\frac{1}{9900}\right)\)

\(A=98-\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\right)\)

\(A=98-\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\right)\)

\(A=98-\left(\frac{1}{2}-\frac{1}{100}\right)=98-\frac{49}{100}=\frac{9751}{100}\)

Vậy.............

ST
3 tháng 5 2017 lúc 11:35

 \(A=\frac{5}{6}+\frac{11}{12}+\frac{19}{20}+...+\frac{9989}{9900}\)

\(A=\left(1-\frac{1}{6}\right)+\left(1-\frac{1}{12}\right)+\left(1-\frac{1}{20}\right)+...+\left(1-\frac{1}{9900}\right)\)

\(A=\left(1+1+1+...+1\right)-\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{9900}\right)\)

               có 50 số 1

\(A=50-\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\right)\)

Đặt B = \(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)

\(B=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)

\(B=\frac{1}{2}-\frac{1}{100}=\frac{49}{100}\)

Thay B vào A ta được:

\(A=50-\frac{49}{100}=\frac{5000}{100}-\frac{49}{100}=\frac{4951}{100}\)

Trần Kim Khánh
4 tháng 5 2017 lúc 9:20

cảm ơn 2 bạn nhiều nha !

Tsukino Usagi
Xem chi tiết
Nguyễn Hưng Phát
1 tháng 4 2018 lúc 10:51

D=\(1-\frac{1}{2}+1-\frac{1}{6}+1-\frac{1}{12}+........+1-\frac{1}{9900}\)

\(=1-\frac{1}{1.2}+1-\frac{1}{2.3}+........+1-\frac{1}{99.100}\)

\(=99-\left(\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{99.100}\right)\)

\(=99-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{99}-\frac{1}{100}\right)\)

\(=99-\left(1-\frac{1}{100}\right)=98+\frac{1}{100}=\frac{9801}{100}\)

Phạm Tuấn Đạt
1 tháng 4 2018 lúc 10:52

d=1/1.2+5/2.3+11/3.4+...+9899/99.100

=>d=1-1/2+1/2-1/3+...+1/99-1/100

=>d=1-1/100

=>d=99/100

Vậy d=99/100

Nguyễn Văn An
1 tháng 4 2018 lúc 11:15

99/100

Nguyễn Đăng Cường
Xem chi tiết