Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
30 tháng 10 2017 lúc 13:37

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
3 tháng 1 2020 lúc 14:00

a) Nếu n = 3k+1 thì  n 2 = (3k+1)(3k+1) hay  n 2  = 3k(3k+1)+3k+1

Rõ ràng  n 2  chia cho 3 dư 1

Nếu n = 3k+2 thì  n 2 = (3k+2)(3k+2)  hay  n 2 = 3k(3k+2)+2(3k+2) = 3k(3k+2)+6k+3+1 nên  n 2  chia cho 3 dư 1.

b) p là số nguyên tố lớn hơn 3 nên không chia hết cho 3. Vậy p 2  chia cho 3 dư 1 tức là   p 2 = 3 k + 1  do đó  p 2 + 2003 = 3 k + 1 + 2003 = 3k+2004 ⋮ 3

Vậy p 2 + 2003  là hợp số

Hồ Hữu Phong
25 tháng 6 2023 lúc 8:22

a) n không chia hết cho 3 => n chia cho 3 dư 1 hoặc 2

+) n chia cho 3 dư 1 : n = 3k + 1 => n2 = (3k +1).(3k +1) = 9k2 + 6k + 1 = 3.(3k+ 2k) + 1 => n2 chia cho 3 dư 1

+) n chia cho 3 dư 2 => n = 3k + 2 => n= (3k +2).(3k+2) = 9k2 + 12k + 4 = 3.(3k+ 4k +1) + 1 => n2 chia cho 3 dư 1

Vậy...

b) p là số nguyên tố > 3 => p lẻ => plẻ => p + 2003 chẵn => p2 + 2003 là hợp số

The Boy Sốc Nhiệt
Xem chi tiết
Diệp Chi
Xem chi tiết
Diệp Chi
23 tháng 3 2020 lúc 10:06

3 cách nhé mọi người , ai lm đc 3 cách thì mik sẽ cho nhé

Khách vãng lai đã xóa
Fudo
23 tháng 3 2020 lúc 16:27

                                                         Bài giải

n là số nguyên tố lớn hơn 3 nên có dạng 3k + 1 ; 3k + 2

Ta có :

Với n = 3k + 1 thì \(n^2+2015=\left(3k+1\right)^2+2015=9k^2+6k+1+2015=9k^2+6k+2016\)

\(=3\left(3k^2+2k+672\right)\text{ }⋮\text{ }3\text{ ( là hợp số )}\)

Với n = 3k + 2 thì \(n^2+2015=\left(3k+2\right)^2+2015=9k^2+12k+4+2015=9k^2+12k+2019\)

\(=3\left(k^2+4k+673\right)\text{ }⋮\text{ }3\text{ ( là hợp số ) }\)

Vậy n là số nguyên tố lớn hơn 3 thì \(n^2+2015\) là hợp số

Khách vãng lai đã xóa
Nguyễn Đăng Khoa
Xem chi tiết
dddddddddddddddddddddddd...
23 tháng 10 2016 lúc 21:05

hop so

Nguyen tien dung
23 tháng 10 2016 lúc 21:11

p là số nguyên tố <3=>p=2

22+2015=4+2015=2019 chia hết cho 3=>p2+2015 là hợp số 

Nguyễn Đăng Khoa
30 tháng 10 2016 lúc 14:26

thank mọi người nhưng mình làm được rùi

lucyylucyy
Xem chi tiết
Hoàng Duy Khánh TK
Xem chi tiết
I love soccer
2 tháng 4 2018 lúc 21:13

Vì n là số nguyên tố lớn hơn 3 nên n2 chia cho 3 dư 1.
=> n2
 có dạng 3k+1
=>n2+2006=3k+1+2006=3k+2007
Vì 3k chia hết cho 3
2007 chia hết cho 3
=> 3k+1+2006 chia hết cho 3
=>n2+2006 chia hết cho 3 nên nó là hợp số

Hoàng Ngọc Anh
Xem chi tiết
Trịnh Tiến Đức
30 tháng 10 2015 lúc 19:59

p  là số nguyên tố > 3 

=> p =3k+1 ; 3k+2

Xét p=3k+1 

=> p2+2015

= (3k+1)(3k+1)+2015

= 3k(3k+1)+3k+1+2015

= 3k(3k+1)+3k+2016

Vì 3k(3k+1) ;  3k ; 2016 chia hết cho 3 

=> 3k(3k+1)+3k+2016 chia hết cho 3 

=> p2​+2015 là hợp số 

Xét p =3k+2 

=> p2+2015

= (3k+2)(3k+2) +2015

= 3k(3k+2)+2(3k+2)+2015

= 3k(3k+2)+6k+4+2015

= 3k(3k+2)+6k+2019

Vì 3k(3k+2); 6k ; 2019 chia hết cho 3 

=> 3k(3k+2)+6k+2019 chia hết cho 3 

=> p​2+2015 chia hết cho 3 

=> p2​+2015 là hợp số 

=> p2+2015 luôn là hợp số khi p là số nguyên tố > 3 

THI MIEU NGUYEN
Xem chi tiết