Chứng minh rằng: nếu ac=bc(a,b,c thuộc Z, c khác 0) thì a = b
Chứng minh rằng: với mọi a,b,c thuộc Z ta có:
a) Nếu a>b và c>0 thì ac>bc
b) Nếu a>b và c<0 thì ac<bc
Chứng minh rằng: với mọi a,b,c thuộc Z ta có:
a) Nếu a>b và c>0 thì ac>bc
b) Nếu a>b và c<0 thì ac<bc
*làm đúng và nhanh nhất mình tick
Cho a,b,c,d thuộc Z với a khác 0
Chứng minh rằng: Nếu (ab+cd) chia hết cho (a-c) thì (ad+bc) chia hết cho (a-c)
Cho a,b,c,d thuộc Z; b,d >0. Chứng minh rằng:
a) Nếu a/b > c/d thì ad>bc
b) Nếu ad>bc thì a/b>c/d
a)Do b,d>0
\(\frac{a}{b}>\frac{c}{d}\Rightarrow\frac{a.d}{b.d}>\frac{c.b}{b.d}\Rightarrow a.d>b.c\)
b)Do b,d>0
=>\(ad>bc\Leftrightarrow\frac{ad}{bd}>\frac{bc}{bd}\Rightarrow\frac{a}{b}>\frac{c}{d}\)
Chứng minh rằng nếu a,b,c là các số khác 0 thoả mãn : (ab+ac)/2=(ba+bc)/3=(ca+cb)/4 thì a/3=b/5=c/15
ta có (ab+ac)/2 = (ba+bc)/3 = (ca+cb)/4
=ab+ac-ba-bc+ca+cb/2-3+4 = 2ac/3
=ab+ac+ba+bc-ca-cb/2+3-4 = 2ab
=ab+ac-ba-bc-ca-cb/2-3-4 = 2bc/5
=> 2ac/3=2ab=2bc/5
Ta có 2ac/3=2ab/1 =>c/3 = b/1 => c/15 = b/5 (1)
2ac/3 = 2bc/5 => a/3 = b/5 (2)
từ (1) và(2) => a/3 = b/5 = c/15
Chứng minh răng nếu a.c=b.c(a,b,c thuộc Z, c khác 0) thì a=b
cái này nếu chia cho c thì tức là công nhận định lí r vì chia c = *c^-1 ở 2 vế r. Ở nước ngoài mình sẽ k đc chứng minh như vậy. Mình sẽ chứng minh a*c =a + a + a +....+a, b*c cũng thế. c lần a = c lần b vì a=b theo tính chất giao hoán vậy nên ac=bc
Chứng minh rằng nếu a(y+z) = b(z+x) = c(x+y) trong đó a,b,c khác nhau và khác 0 thì y - z / a(b-c) = z - x/ b (c-a) = x - y / c (a-b)
Chứng minh rằng nếu có : a(y+z) = b(z+x) = c(x+y) . Trong đó a , b , c là các số khác nhau và khác 0 thì y-z / a(b-c) = z-x / b(c-a) = x-y /c(a-b)
Chứng minh rằng nếu có : a(y+z) = b(z+x) c(x+y) . Trong đó a , b , c là các số khác nhau và khác 0 thì : y-z / a(b-c) = z-x / b(c-a) = x-y / c(a-b)