\(f\left(x\right)=\hept{\begin{cases}-x^2+5,x< 0\\x+7,x\ge0\end{cases}=>f\left(5\right)=?}\)dành cho thủy tiên nha
\(\left(2x+3\right)^2+\left(3x-2\right)^4=0\) vì \(\left(2x+3\right)^2\ge0;\left(3x-2\right)^4\ge0\) nên\(\Rightarrow\hept{\begin{cases}\left(2x+3\right)^2=0\\\left(3x-2\right)^4=0\end{cases}\Rightarrow\hept{\begin{cases}2x+3=0\\3x-2=0\end{cases}}}\) \(\Rightarrow\hept{\begin{cases}x=-\frac{3}{2}\\x=\frac{2}{3}\end{cases}}\)
Tìm x để biểu thức có nghĩa \(\frac{\sqrt{4-x}}{\sqrt{x+1}}+\sqrt{9-x^2}\)
Biểu thức có nghĩa khi \(\hept{\begin{cases}4-x\ge0\\x+1>0\\9-x^2\ge0\end{cases}}\Rightarrow\hept{\begin{cases}x\le4\\x\ge1\\\left(3-x\right)\left(3+x\right)\ge0\end{cases}}\)\(\left(1\right)\)
\(\left(3-x\right)\left(3+x\right)\ge0\)
\(TH1:\hept{\begin{cases}3-x\ge0\\3+x\ge0\end{cases}\Rightarrow\hept{\begin{cases}x\le3\\x\ge-3\end{cases}\Rightarrow}-3\le x\le3}\)\(\left(2\right)\)
\(TH2\hept{\begin{cases}3-x< 0\\3+x< 0\end{cases}\Rightarrow\hept{\begin{cases}x>3\\x< -3\end{cases}\left(ktm\right)}}\)
TỪ ( 1 ) và ( 2 ) ta có : \(\hept{\begin{cases}1\le x\le4\\-3\le x\le3\end{cases}\Rightarrow1\le x\le3}\)
Vậy với \(1\le x\le3\)thì biểu thức xác định
Xl nha , ké chút ạ
Sai bất đẳng thức giữa của (1) rồi\(x+1>0\Leftrightarrow x>-1.\)
Suy ra phải sửa luôn mấy phần bên dưới. Và kết luận : \(-1< x\le3\)
Ai giỏi toán giải giúp mình mấy hệ phương trình
1.\(\hept{\begin{cases}\left|x-1\right|-\left|y-5\right|=1\\y=5+\left|x-1\right|\end{cases}}\)
2.\(\hept{\begin{cases}2x^3+3yx^2=5\\y^3+6xy^2=7\end{cases}}\)
3.\(\hept{\begin{cases}x-1=\left|2y-1\right|\\y-1=\left|2z-1\right|\\z-1=\left|2x-1\right|\end{cases}}\)
4.\(\hept{\begin{cases}x^2+xy+y^2=7\\y^2+yz+z^2=28\\x^2+xz+z^2=7\end{cases}}\)
5.\(\hept{\begin{cases}\left|x-1\right|+y=0\\x+3y-3=0\end{cases}}\)
\(\hept{\begin{cases}x^2+y^2+xy=3\\xy+3x^2=4\end{cases}}\)
Tìm các giá trị nguyên x,y thõa mãn : \(y^2=x\left(x+1\right)\left(x+2\right)\left(x+3\right)\)
Giải :
Do \(y^2\ge0\) => \(x\left(x+1\right)\left(x+2\right)\left(x+3\right)\ge0\)
<=> \(\left(x^2+3x\right)\left(x^2+3x+2\right)\ge0\)
Xảy ra hai trường hợp
\(\left(I\right)\hept{\begin{cases}x^2+3x\ge0\\x^2+3x+2\ge0\end{cases}}\Rightarrow\hept{\begin{cases}x\left(x+3\right)\ge0\\x\left(x+3\right)\ge-2\end{cases}}\Rightarrow x\left(x+3\right)\ge0\)
\(\left(II\right)\hept{\begin{cases}x^2+3x\le0\\x^2+3x+2\le0\end{cases}\Rightarrow\hept{\begin{cases}x\left(x+3\right)\le0\\x\left(x+3\right)\le-2\end{cases}}}\Rightarrow x\left(x+3\right)\le-2\)
\(\Rightarrow\orbr{\begin{cases}x\left(x+3\right)\ge0\\x\left(x+3\right)\le-2\end{cases}}\)
+) Với \(x\left(x+3\right)\ge0\)
=> \(\hept{\begin{cases}x\ge0\\x\ge-3\end{cases}}\) hoặc \(\hept{\begin{cases}x\le0\\x\le-3\end{cases}}\)
=> \(\orbr{\begin{cases}x\ge0\\x\le-3\end{cases}}\)
+) Với \(x\left(x+3\right)\le-2\)=> \(x^2+3x+2\le0\) => \(\left(x+1\right)\left(x+2\right)\le0\)
=> \(\hept{\begin{cases}x+1\ge0\\x+2\le0\end{cases}}\) hoặc \(\hept{\begin{cases}x+1\le0\\x+2\ge0\end{cases}}\)
=> \(\hept{\begin{cases}x\ge-1\\x\le-2\end{cases}}\left(removed\right)\) hoặc \(\hept{\begin{cases}x\le-1\\x\ge-2\end{cases}}\Rightarrow-2\le x\le-1\Rightarrow x\in\left\{-2;-1\right\}\)
Vậy với \(y^2\ge0\) thì \(\orbr{\begin{cases}x\ge0\\x\le-3\end{cases}}\) hoặc \(\orbr{\begin{cases}x=-2\\x=-1\end{cases}}\)
Đẳng thức xảy ra <=> dấu bằng của các trường hợp được xét trên xảy ra hay
\(\hept{\begin{cases}y=0\\x\in\left\{0;-1;-2;-3\right\}\end{cases}}\)
P/s : Mấy pác xem hộ em :) , sai chỗ nào chỉ em với :V
Biểu diễn hình học tập nghiệm của các bất phương trình bậc nhất hai ẩn sau:
a,\(\hept{\begin{cases}2x-1\le0\\-3x+5\le0\end{cases}}\)
b,\(\hept{\begin{cases}3-y< 0\\2x-3y+1>0\end{cases}}\)
c,\(\hept{\begin{cases}x-2y< 0\\x+3y>-2\end{cases}}\)
d,\(\hept{\begin{cases}3x-2y-6\ge0\\2\left(x-1\right)+\frac{3y}{2}\le4\\x\ge0\end{cases}}\)
e,\(\hept{\begin{cases}x-y>0\\x-3y\le-3\\x+y>5\end{cases}}\)
f,\(\hept{\begin{cases}x-3y< 0\\x+2y>-3\\y+x< 2\end{cases}}\)
a)\(\hept{\begin{cases}2\left(3x-2\right)-4=5\left(3y+2\right)\\4\left(3x-2\right)+7\left(3y+2\right)=-2\end{cases}}\)
b)\(\hept{\begin{cases}3\left(x+y\right)+5\left(x-y\right)=12\\-5\left(x+y\right)+2\left(x-y\right)=11\end{cases}}\)
Giúp mình nha
\(\hept{\begin{cases}6x-15y=10\\12x+21y=-8\end{cases}}\Leftrightarrow\hept{\begin{cases}12x-30y=20\\12x-21y=-8\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{5}{17}\\y=-\frac{28}{51}\end{cases}}\)
\(\hept{\begin{cases}2\left(3x-2\right)-4=5\left(3y+2\right)\\4\left(3x-2\right)+7\left(3y+2\right)=-2\end{cases}}\)
Đặt \(\hept{\begin{cases}3x-2=t\\3y+2=u\end{cases}}\)
Hệ trở thành : \(\hept{\begin{cases}2t-4=5u\\4t+7u=-2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2t-4-5u=0\\4t+7u-2=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2\left(2t-4-5u\right)=0\\4t+7u+2=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}4t-8-10u=0\\4t+7u+2=0\end{cases}}\)
\(\Leftrightarrow4t-8-10u-4t-7u-2=0\)
\(\Leftrightarrow-10-17u=0\)
\(\Leftrightarrow-17u=10\)
\(\Leftrightarrow u=\frac{-10}{17}\)
\(\Leftrightarrow3y+2=\frac{-10}{17}\Rightarrow y=\frac{-44}{51}\)
Tìm ra t rùi thay vào tìm x nha
Cho hàm số \(f\left(x\right)=\hept{\begin{cases}-2x+7,x< 5\\x+9,x\ge5\end{cases}}\)Khi đó \(f\left(3\right)=\)
giải hệ phương trình
a)\(\hept{\begin{cases}\left(x+5\right)\left(y-2\right)=\left(x+2\right)\left(y-1\right)\\\left(x-4\right)\left(y+7\right)=\left(x-3\right)\left(y+4\right)\end{cases}}\)
b)\(\hept{\begin{cases}\frac{1}{x+y}-\frac{2}{x-y}=2\\\frac{5}{x+y}-\frac{4}{x-y}=3\end{cases}}\)
c)\(\hept{\begin{cases}4x^2+y^2=13\\2x^2-y^2=-7\end{cases}}\)
d)\(\hept{\begin{cases}2xy+2=3x\\5y-\frac{2}{x}=4\end{cases}}\)
e)\(\hept{\begin{cases}2\sqrt{x-1}+3\sqrt{y-2}=5\\3\sqrt{x-1}-\sqrt{y-2}=2\end{cases}}\)
MỌI NGƯỜI GIÚP MK LM MẤY BÀI NÀY NHA MK CẦN GẤP LẮM LUÔN
Ôi trời nhiều thía ? làm từng câu một ha !
a \(\hept{\begin{cases}\left(x+5\right)\left(y-2\right)=\left(x+2\right)\left(y-1\right)\\\left(x-4\right)\left(y+7\right)=\left(x-3\right)\left(y+4\right)\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}xy-2x+5y-10=xy-x+2y-2\\xy+7x-4y-28=xy+4x-3y-12\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}-x+3y=8\\3x-y=16\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}-3x+9y=24\\3x-y=16\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}-3x+9y=24\\3x-y-3x+9y=16+24\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}-3x+9y=24\\8y=40\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=7\\y=5\end{cases}}\)
b, ĐKXĐ \(x\ne\pm y\)
Đặt \(\frac{1}{x+y}=a\) và \(\frac{1}{x-y}=b\)(a và b khác 0)
Ta có hệ \(\hept{\begin{cases}a-2b=2\\5a-4b=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2a-4b=4\\5a-4b=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2a-4b=4\\5a-4b-2a+4b=3-4\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2a-4b=4\\3a=-1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=-\frac{1}{3}\\b=-\frac{7}{6}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{1}{x+y}=-\frac{1}{3}\\\frac{1}{x-y}=-\frac{7}{6}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+y=-3\\x-y=-\frac{6}{7}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+y-x+y=-3+\frac{6}{7}\\x-y=-\frac{6}{7}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2y=-\frac{15}{7}\\x-y=-\frac{6}{7}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=-\frac{27}{14}\\y=-\frac{15}{14}\end{cases}}\)
c,\(\hept{\begin{cases}4x^2+y^2=13\\2x^2-y^2=-7\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}4x^2+y^2+2x^2-y^2=13-7\\2x^2-y^2=-7\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}6x^2=6\\2x^2-y^2=-7\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x^2=1\\y^2=9\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\pm1\\y=\pm3\end{cases}}\)
\(1,\hept{\begin{cases}\sqrt{x}+\sqrt{y}=3\\\sqrt{x+5}+\sqrt{y+3}=5\end{cases}}\)
\(2,\hept{\begin{cases}x\left(x+y+1\right)-3=0\\\left(x+y\right)^2-\frac{5}{x^2}+1=0\end{cases}}\)
\(3,\hept{\begin{cases}xy+x+y=x^2+2y^2\\x\sqrt{2y}-y\sqrt{x-1}=2x-2y\end{cases}}\)
\(4,\hept{\begin{cases}xy+x+1=7y\\x^2y^2+xy+1=13y^2\end{cases}}\)
\(5,\hept{\begin{cases}2y\left(x^2-y^2\right)=3x\\x\left(x^2+y^2\right)=10y\end{cases}}\)