B3: Tính tổng các số tự nhiên có 2 chữ số kô chia hết cho 2, và 5
Câu 1: Tìm số có 2 chữ số biết số đó gấp 2 lần tích của các chữ số của nó.
Câu 2: Tìm số lớn nhất có 3 chữ số thỏa mãn điều kiện số đó chia hết cho 9 và tổng các chữ số hàng trăm với chữ số hàng đơn vị chia hết cho 5.
Câu 3:
A: Tại sao 2 số tự nhiên có tổng không chia hết cho 2 thì tích của chúng lại chia hết cho 2?
B: Số 2006 có thể là tích của ba số tự nhiên liên tiếp hay không?
Bạn nào biết câu nào thì giúp mình làm câu ấy nha.
âu 1:
Gọi số cần tìm là AB (với A và B là các chữ số). Theo đề bài, ta có phương trình:
AB = 2 × A × B
Để giải phương trình này, ta thực hiện các bước sau:
Ta có A và B đều là các chữ số từ 1 đến 9, do đó AB là một số có hai chữ số từ 10 đến 99. Vì AB = 2 × A × B, nên A và B đều khác 0. Do đó, ta có thể giả sử A > B mà không mất tính tổng quát. Khi đó, ta có A < 5 (nếu A ≥ 5 thì AB ≥ 50, vượt quá giới hạn của số có hai chữ số). Với mỗi giá trị của A từ 1 đến 4, ta tính được giá trị tương ứng của B bằng cách chia AB cho 2A. Nếu B là một số nguyên từ 1 đến 9 thì ta đã tìm được một giá trị của AB.Kết quả là AB = 16 hoặc AB = 36.
Vậy có hai số thỏa mãn điều kiện đề bài là 16 và 36.
Câu 2:
Số cần tìm có dạng ABC, với A, B, C lần lượt là chữ số hàng trăm, chục và đơn vị. Theo đề bài, ta có hai điều kiện:
ABC chia hết cho 9. A + C chia hết cho 5.Để tìm số lớn nhất thỏa mãn hai điều kiện này, ta thực hiện các bước sau:
Vì ABC chia hết cho 9, nên tổng các chữ số của ABC cũng chia hết cho 9. Do đó, ta có A + B + C = 9k (với k là một số nguyên dương). Từ điều kiện thứ hai, ta suy ra A + C là một trong các giá trị 5, 10 hoặc 15. Nếu A + C = 5 thì B = 4 và C = 1. Như vậy, ta có ABC = 401, không chia hết cho 9. Nếu A + C = 10 thì B = 0 và tổng các chữ số của ABC là 10, do đó ABC chia hết cho 9. Ta có ABC = 990. Nếu A + C = 15 thì B = 0 và tổng các chữ số của ABC là 18, do đó ABC chia hết cho 9. Ta có ABC = 999.Vậy số lớn nhất thỏa mãn điều kiện đề bài là 999.
Câu 3:
A. Giả sử hai số tự nhiên a và b có tổng không chia hết cho 2. Khi đó, a và b có cùng hay khác tính chẵn lẻ. Nếu a và b đều là số lẻ thì tổng của chúng là một số chẵn, mâu thuẫn với giả thiết. Do đó, a và b phải cùng tính chẵn. Khi đó, ta có thể viết a = 2m và b = 2n, với m và n là các số tự nhiên. Từ đó, ta có:
ab = 2m × 2n = 2(m + n)
Vì m + n là một số tự nhiên, nên ab chia hết cho 2.
B. Số 2006 không thể là tích của ba số tự nhiên liên tiếp vì ba số tự nhiên liên tiếp phải có dạng (n - 1), n, (n + 1) hoặc n
Tìm tổng tất cả các số tự nhiên có 2 chữ số không chia hết cho 3 và 5.
Giải:
Gọi tổng phải tìm là S, tổng các số có 2 chữ số là \(S_1\), tổng các chữ số chia hết cho 3 là \(S_2\), tổng các số có 2 chữ số chia hết cho 5 là \(S_3\), tổng các số có 2 chữ số chia hết cho 15 là \(S_4\). Ta lần lượt có:
\(S_1=\frac{10+99}{2}\times90=4905\) ; \(S_2=\frac{12+99}{2}\times30=1665.\)
\(S_3=\frac{10+95}{2}\times18=945\) ; \(S_4=\frac{15+90}{2}\times6=315.\)
\(S=S_1-S_2-S_3+S_4=4905-1665-945+315=2610\)
( Phải cộng thêm \(S_4\) vì trong \(S_2\) và \(S_3\) có những số vừa chia hết cho 3 vừa chia hết cho 5(tức là chia hết cho 15) nên những số đó đã được trừ đi 2 lần)
gọi A là tổng các số 2 chữ số là:
A= 10+11+12+13+...+99
=10+99x90:2=4905
gọi B là tổng các chữ số chia hết cho 3:
B=12+15+18+...+99
=12+99x30:2=1665
gọi C là tổng các chữ số chia hết cho 5:
C=10+15+20+..+99
= 10+95x18:2=945
gọi D là tổng hai số chia hết cho cả 3 và 5:
D=15+30+...+90
=15+90x6:2=315.
Tổng tất cả hai số tự nhiên không chia hết cho cả 3 và 5 là:
4905-1665-945+315=2610.
Đ/s:...
Chứng tỏ rằng tổng của các số tự nhiên có 3 chữ số chia hết cho 2 và 5
Bài 1 : Tìm chữ số 20a20a20a chia hết cho 7
Bài 2: cho 3 số tự nhiên khác nhau và khác 0 . Lập tất cả các số tự nhiên có 3 chữ số gồm cả 3 chữ số ấy . chứng minh rằng tổng của chúng chia hết cho 6 và 37
TREN MẠNG ĐỪNG CHỬI LUNG TUNG
CMR: một số tự nhiên có 2 chữ số chia hết cho 7 khi và chỉ khi tổng của chữ số hàng chục và 5 lần chữ số hang đơn vị chia hết cho 7
Tìm số tự nhiên có hai chữ số, các chữ số giống nhau, biết rằng số đó chia hết cho 2 và chia hết cho 5 thi dư 3
Tìm số tự nhiên có hai chữ số, các chữ số giống nhau, biết rằng số đó chia hết cho 2 và chia hết cho 5 thi dư 3.
số tự nhiên chia 5 dư 3 có tận cùn là 3 hoặc 8 mà số đó chia hết cho 2 nên số đó là 88
một số tự nhiên a và 5 lần số đó có tổng các chữ số như nhau
chứng minh rằng a chia hết 9
a) nếu dịch dấu phẩy của số A sang bên phải 1 chữ số thì ta được số tự nhiên chia hết cho 5. số A có 4 chữ số và tổng các chữ số của A là 31. tìm số A
b) tìm số tự nhiên ab, biết ab chia cho 5 dư 2 và ab chia hết cho 9
Nếu dịch dấu phẩy của số A sang bên phải 1 chữ số thì ta đc số tự nhiên chia hết cho 5, số A có 4 chữ số
=> A có dạng abc,5 ( a khác 0; a,b,c < 10)
=> a+b+c+5= 31
=> a+b+c= 26
=> a=8; b=c=9 hoặc a=b=9; c=8 hoặc a=c=9, b=8
lười làm câu b quá, link tham khảo: https://olm.vn/hoi-dap/detail/77434067599.html