Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thu Hà
Xem chi tiết
Nguyễn An Ninh
Xem chi tiết
Minh Triều
12 tháng 6 2015 lúc 20:43

Sai đề ruj A=137256 ko thể chia hết cho 50

Trinh Dang Ha Thuy
Xem chi tiết
Hà Nguyễn Thị Đan
Xem chi tiết
Lê Anh Tú
Xem chi tiết
Băng Dii~
27 tháng 10 2017 lúc 20:36

A = ( 7 + 7^2 + 7^3 ) + ( 7^4 + 7^5 + 7^6 ) + ... + ( 7^88 + 7^89 + 7^90 )

A = 7( 1 + 7 + 7^2 ) + 7^4 ( 1 + 7 + 7^2 ) + ... + 7^88( 1 + 7 + 7^2 ) 

A = 7 . 57 + 7^4 . 57 + ... + 7^88 . 57

A = 57( 7 + 7^4 + ... + 7^88 )

=> A chia hết cho 57

ddyjdeyeyy
27 tháng 10 2017 lúc 20:31

nhóm 3 số 1 rồi rút 7 ra là đc

Lê Anh Tú
27 tháng 10 2017 lúc 20:32

cái đó biết rồi,muốn làm cách làm chi tiết cơ.

Đoàn Thị Thúy An
Xem chi tiết
Nguyễn An Ninh
Xem chi tiết
my duyen le
Xem chi tiết
Trần H khánh my
Xem chi tiết
Nguyệt
17 tháng 10 2018 lúc 12:33

\(A=\left(2+2^2+2^3+2^4\right)+....+\left(2^{17}+2^{18}+2^{19}+2^{20}\right)\)

\(A=30+...+2^{16}.\left(2+2^2+2^3+2^4\right)\)

\(A=30+...+2^{16}.30\)

\(A=30.\left(1+...+2^{16}\right)⋮5\)

B tương tự ( 57=3.19)

cm tổng đó chia hết cho 3 và 19 là đc =)

Trần H khánh my
17 tháng 10 2018 lúc 13:06

bn có thể trả lời tiếp đc ko

phạm mạnh hùng
Xem chi tiết
Nguyễn Minh Đăng
25 tháng 10 2020 lúc 17:32

1) \(1+4+4^2+4^3+...+4^{2012}\)

\(=\left(1+4+4^2\right)+\left(4^3+4^4+4^5\right)+...+\left(4^{2010}+4^{2011}+4^{2012}\right)\)

\(=21+21\cdot4^3+...+21\cdot4^{2010}\)

\(=21\cdot\left(1+4^3+...+4^{2010}\right)\) chia hết cho 21

2) \(1+7+7^2+7^3+...+7^{101}\)

\(=\left(1+7\right)+\left(7^2+7^3\right)+...+\left(7^{100}+7^{101}\right)\)

\(=8+8\cdot7^2+...8\cdot7^{100}\)

\(=8\cdot\left(1+7^2+...+7^{100}\right)\) chia hết cho 8

3) CM chia hết cho 5:

\(2+2^2+2^3+2^4+...+2^{100}\)

\(=\left(2+2^3\right)+\left(2^2+2^4\right)+...+\left(2^{98}+2^{100}\right)\)

\(=5\cdot2+5\cdot2^2+...+5\cdot2^{98}\)

\(=5\cdot\left(2+2^2+...+2^{98}\right)\) chia hết cho 5

CM chia hết cho 31:

\(2+2^2+2^3+...+2^{100}\)

\(=\left(2+2^2+2^3+2^4+2^5\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)

\(=2\cdot31+...+2^{96}\cdot31\)

\(=31\cdot\left(2+...+2^{96}\right)\) chia hết cho 31

Khách vãng lai đã xóa
Lí tự trọng
19 tháng 11 2023 lúc 19:43

Rrffhvyccbvfccvbbbhhgg