tìm GTNN Q= 2x2+9y2-6xy-6x-12y+2015
Tìm GTNN:
1. G=2x2+9y2-6xy-6x-12y+2021
2. H=2x2+4y2+4xy+4y+9
3. I= x2-4xy+5y2+10x-22y+28
4. K=x2+5y2-4xy+6x-14y+15
bài 1 Tìm x,y sao cho biểu thức A=2x2+9y2−6xy−6x−12y+2024 đạt GTNN. Tìm giá trị đó.
A=2x^2+9y^2-6xy-6x-12y+2024
A = (x^2 -6xy +9y^2) + 4(x -3y) + x^2 - 10x + 2024
A = (x -3y)^2 +4(x -3y) + 4 + x^2 -10x +25 + 1995
A = (x -3y +2)^2 + (x -5)^2 + 1995 \geq 1995
Min A = 1995
x - 5 = 0 => x = 5
Và x - 3y + 2 = 0 hay 5 -3y +2 = 0 => -3y = -7 => y = 7/3
\(K\)\(nha!~!\)
Tìm GTNN của A=\(2x^2+9y^2-6xy-6x-12y+2015\)
A=2x2 + 9y2 - 6xy - 6x -12y + 2015
=(x2-6xy + 9y2)+(4x - 12y) + x2 - 10x +2015
=(x - 3y)2+ 4(x - 3y) + 4 + (x2 - 10x +25)+ 1986
=(x- 3y - 2)2+(x - 5)2 +1986
ta có (x-3y-2)2 > hoặc = 0; (x-5)2>hoặc =0(với mọi giá trị x,y)
=> (x- 3y -2)2+ (x-5)2 > hoặc = 0(với mọi giá trị x,y)
=>(x - 3y -2)2 + (x - 5)2+1986 > hoặc = 1986
=> A đạt GTNN là 1986 khi:
(x-3y-2)2 + (x - 5)2 +1986 = 1986
<=>(x-3y-2)2 + (x - 5)2= 0
<=>x-5 =0 <=> x=5
và x- 3y -2=0 hay 5 - 3y -2=0 <=>-3y= - 3 <=> y=1
Vậy GTNN của A là 1986 khi x= 5 và y=1
( BAÌ NÀY CÓ GÌ KHÔNG HIỂU CỨ HỎI NHA ! )
Cho \(A=2x^2+9y^2-6xy-6x-12y+2036\)
Tìm x,y để A đạt GTNN. Tìm GTNN đó.
\(A=2x^2+9y^2-6xy-6x-12y+2036\)
\(=x^2-10x+25+x^2-6xy+9y^2+4x-12y+4+2007\)
\(=\left(x-5\right)^2+\left(x-3y\right)^2+4\left(x-3y\right)+4+2007\)
\(=\left(x-5\right)^2+\left(x-3y+2\right)^2+2007\)
\(\Rightarrow A\ge2007\)
Dấu "=" xảy ra khi \(x=5,y=\frac{7}{3}\)
Tìm GTNN của bt:
Q= 2x2+9y2 - 6xy - 6x - 12y + 2017
Tìm GTNN của biểu thức:
\(A=2x^2+9y^2-6xy-6x-12y+2018\)
\(A=2x^2+9y^2-6xy-6x-12y+2018\)
\(2A=4x^2+18y^2-12xy-12x-24y+4036\)
\(2A=\left(4x^2-12xy+9y^2\right)-12x-24y+9y^2+4036\)
\(2A=\left(2x-3y\right)^2-6\left(2x-3y\right)+9+\left(9y^2-42y+49\right)+3975\)
\(2A=\left(2x-3y-3\right)^2+\left(3y-7\right)^2+3975\ge3975\)
\(\Rightarrow A\ge\frac{3975}{2}\) Dấu "=" xảy ra tại \(y=\frac{7}{3};x=5\)
Em sai từ dòng thứ 3 xuống dòng thứ 4
4036 = 9+49 + 3975 ???
Điều đó dẫn đến kết quả của em sai. Kiểm tra lại nhé Khải!
Tìm GTNN :2x^2 +9y^2-6xy-6x-12y+2004
\(2x^2+9y^2-6xy-6x-12y+2004\)
\(=x^2-10x+25+x^2+9y^2+4-6xy+4x-12y+1975\)
\(=\left(x-5\right)^2+\left(x-3y+2\right)^2+1975\ge1975\)
Dấu \(=\)khi \(\hept{\begin{cases}x-5=0\\x-3y+2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=5\\y=\frac{7}{3}\end{cases}}\).
Tìm Min : A=2x^2 + 9y^2 - 6xy - 6x - 12y + 2015
Tìm GTNN của: 2x2+9y-6xy-6x-12y+2004