cho các số dương x,y thỏa mãn x+y=1.CMR : \(\frac{1}{x^2+y^2}+\frac{2}{xy}+4xy\ge11\)
Cho x,y là các số dương thỏa mãn \(x+y=1\).Chứng minh rằng : \(\frac{1}{x^2+y^2}+\frac{2}{xy}+4xy\ge11\)
Áp dụng BĐT Cauchy và Cauchy - Schwarz ta có:
\(\frac{1}{x^2+y^2}+\frac{2}{xy}+4xy\)
\(=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\left(4xy+\frac{1}{4xy}\right)+\frac{5}{4xy}\)
\(\ge\frac{4}{x^2+y^2+2xy}+2\sqrt{4xy\cdot\frac{1}{4xy}}+\frac{5}{\left(x+y\right)^2}\)
\(=\frac{4}{\left(x+y\right)^2}+2+\frac{5}{1^2}=4+2+5=11\)
Dấu "=" xảy ra khi: \(x=y=\frac{1}{2}\)
cho mình hỏi bài này với. toán 9
cho x,y là các số thực dương thỏa mãn điều kiện \(x+y\le1\)
CMR: \(\frac{1}{x^2+y^2}+\frac{2}{xy}+4xy\ge11\)
\(\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\left(\frac{1}{4xy}+4xy\right)+\frac{5}{4xy}\ge\frac{\left(1+1\right)^2}{\left(x+y\right)^2}+2\sqrt{\frac{1}{4xy}.4xy}+\frac{5}{\left(x+y\right)^2}=4+2+5=11\)
Dấu = xảy ra khi x =y = 1/2
chứng minh sao lại ra được điều này bạn?
\(\frac{1}{x^2+y^2}+\frac{1}{2xy}\ge\frac{\left(1+1\right)^2}{\left(x+y\right)^2}\)
Cho x,y là các số thực dương thỏa mãn \(x+y\le1\)
CMR \(\frac{1}{x^2+y^2}+\frac{2}{xy}+4xy\ge11\)
\(VT=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\left(\frac{1}{4xy}+4xy\right)+\frac{5}{4xy}\)
\(\ge\frac{4}{\left(x+y\right)^2}+2+\frac{5}{\left(x+y\right)^2}\ge4+2+5=11\)
Cho các số dương x,y thỏa mãn x+y=1.Tìm GTNN của \(P=\frac{1}{x^2+y^2}+\frac{2}{xy}+4xy\)
Cho các số dương x,y thỏa mãn x+y=1
Tìm GTNN của \(P=\frac{1}{x^2+y^2}+\frac{2}{xy}+4xy\)
cho x,y là các số thực dương thỏa mãn:\(\frac{1}{x}+\frac{2}{y}=2\)
CMR: \(5x^2+y-4xy+y^2\ge3\)
Áp dụng BĐT Cauchy cho 2 số không âm, ta được:
\(\frac{1}{x}+\frac{2}{y}=2\ge2\sqrt{\frac{2}{xy}}\Leftrightarrow\sqrt{\frac{2}{xy}}\le1\Leftrightarrow xy\ge2\)
\(5x^2+y-4xy+y^2=\left(2x-y\right)^2+x^2+y\ge x^2+y\)
\(=x^2+\frac{y}{2}+\frac{y}{2}\ge3\sqrt[3]{x^2.\frac{y}{2}.\frac{y}{2}}=3\sqrt[3]{\frac{\left(xy\right)^2}{4}}\ge3\sqrt[3]{\frac{4}{4}}=3.1=3\)
cho các số dương x;y;z thỏa mãn xy+yz+zx=670
CMR: \(\frac{x}{x^2-yz+2010}+\frac{y}{y^2-zx+2010}+\frac{z}{z^2-xy+2010}\ge\frac{1}{x+y+z}\)
Ta có : \(\frac{x}{x^2-yz+2010}+\frac{y}{y^2-xz+2010}+\frac{z}{z^2-xy+2010}\)
\(=\frac{x^2}{x^3-xyz+2010x}+\frac{y^2}{y^3-xyz+2010y}+\frac{z^2}{z^3-xyz+2010z}\)
\(\ge\frac{\left(x+y+z\right)^2}{x^3+y^3+z^3-3xyz+2010\left(x+y+z\right)}=\frac{\left(x+y+z\right)^2}{x^3+y^3+z^3-3xyz+3\left(xy+yz+xz\right)\left(x+y+z\right)}\)
\(=\frac{\left(x+y+z\right)^2}{x^3+y^3+z^3+3xy^2+3x^2y+3x^2z+3xz^2+3y^2z+3yz^2}=\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^3}=\frac{1}{x+y+z}\)
cho x;y;z là các số thực dương thỏa mãn x+y+z=1.CMR:
\(\frac{xy}{x^2+y^2}+\frac{yz}{y^2+z^2}+\frac{zx}{z^2+x^2}+\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge\frac{15}{4}\)
vì x+y+z=1nên
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\)\(\frac{x+y+z}{x}+\frac{x+y+z}{y}+\frac{x+y+z}{z}\)\(=3+\left(\frac{x}{y}+\frac{y}{z}\right)+\left(\frac{y}{z}+\frac{z}{y}\right)+\left(\frac{x}{z}+\frac{z}{x}\right)\)=\(3+\frac{x^2+y^2}{xy}+\frac{y^2+z^2}{yz}+\frac{x^2+z^2}{xz}\)
nen \(\frac{xy}{x^2+y^2}+\frac{yz}{y^2+z^2}+\frac{xz}{x^2+z^2}+\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\) =\(\left(\frac{xy}{x^2+y^2}+\frac{x^2+y^2}{4xy}\right)+\left(\frac{yz}{y^2+z^2}+\frac{y^2+z^2}{4yz}\right)+\left(\frac{xz}{x^2+z^2}+\frac{x^2+z^2}{xz}\right)+\frac{3}{4}\)
\(\ge2.\frac{1}{2}+\frac{2.1}{2}+\frac{2.1}{2}+\frac{3}{4}=\frac{15}{4}\)(dpcm)
dau = xay ra khi x=y=z=1/3
cho x,y,z là các số dương thỏa mãn \(xyz=\frac{1}{2}\)CMR : \(\frac{yz}{x^2\left(y+z\right)}+\frac{zx}{y^2\left(x+z\right)}+\frac{xy}{z^2\left(y+x\right)}\ge xy+yz+zx\)