Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Hữu Ngọc Minh
Xem chi tiết
nguyen kim chi
Xem chi tiết
Mr Lazy
2 tháng 7 2015 lúc 13:35

\(x-\sqrt{x^2-1}=\frac{x^2-\left(x^2-1\right)}{x+\sqrt{x^2-1}}=\frac{1}{x+\sqrt{x^2-1}}=t\)\(\Rightarrow x+\sqrt{x^2-1}=\frac{1}{t}\)

Ta có: \(\left(1+t\right)^{2015}+\left(1+\frac{1}{t}\right)^{2015}=2^{2016}\)(1)

Áp dụng Côsi ta có: 

\(1+t\ge2\sqrt{t}\Rightarrow\left(1+t\right)^{2015}\ge2^{2015}.\sqrt{t^{2015}}\)

\(1+\frac{1}{t}\ge\frac{2}{\sqrt{t}}\Rightarrow\left(1+\frac{1}{t}\right)^{2015}\ge\frac{2^{2015}}{\sqrt{t^{2015}}}\)

\(\Rightarrow\left(1+t\right)^{2015}+\left(1+\frac{1}{t}\right)^{2015}\ge2^{2015}\left(\sqrt{t^{2015}}+\frac{1}{\sqrt{t^{2015}}}\right)\)

\(\ge2^{2015}.2\sqrt{\sqrt{t^{2015}}.\frac{1}{\sqrt{t^{2015}}}}=2^{2016}\)

Dấu "=" xảy ra khi và chỉ khi t = 1.

Do đó, từ (1) => \(t=\frac{1}{x+\sqrt{x^2-1}}=1\Rightarrow x+\sqrt{x^2-1}=1\)

\(\Rightarrow1-x=\sqrt{x^2-1}\Rightarrow\left(1-x\right)^2=x^2-1\Leftrightarrow2-2x=0\Leftrightarrow x=1\)

Vậy: \(x=1\text{ là nghiệm (nguyên) duy nhất của phương trình.}\)

Nguyễn Bạch Trường Giang
Xem chi tiết
Lê Huỳnh Minh Ánh
9 tháng 7 2016 lúc 12:28

khó quá ak

Nguyễn Bạch Trường Giang
9 tháng 7 2016 lúc 13:00

ừ, bạn bik làm thì giúp mình nha ^^

Lâm Minh Anh
Xem chi tiết
ngonhuminh
21 tháng 10 2016 lúc 1:22

x-2006=y

I(y+1)I^2005+IyI^2006=1 

=> y=0, y=-1

x=2006 hoac x=2005

Nguyện Hoàng Ngọc
Xem chi tiết
Long
31 tháng 5 2017 lúc 11:21

câu 2 :

 \(\Leftrightarrow\)\(\frac{x+1}{2008}+\frac{x+2}{2007}+\frac{x+3}{2006}-\frac{x+4}{2005}-\frac{x+5}{2004}-\frac{x+6}{2003}\)=0

\(\Leftrightarrow\frac{x+2009}{2008}+\frac{x+2009}{2007}+\frac{x+2009}{2006}-\frac{x+2009}{2005}-\frac{x+2009}{2004}-\frac{x-2009}{2003}\)=0

\(\Leftrightarrow\left(x+2009\right)\left(\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}-\frac{1}{2005}-\frac{1}{2004}-\frac{1}{2003}\right)\)

\(\Rightarrow x+2009=0\)

\(\Rightarrow x=-2009\)

Hoàng Đình Đại
Xem chi tiết
Hoàng Đình Đại
Xem chi tiết
paker alex
Xem chi tiết
tống thị quỳnh
14 tháng 8 2017 lúc 21:24

Ta có a+b+c=0\(\Rightarrow\)\(\left(a+b+c\right)^2=0\)\(\Rightarrow a^2+b^2+c^2+2ab+2bc+2ca=0\)\(\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)\(\Rightarrow a^2+b^2+c^2=0\).Mặt khác ta có :\(a^2\ge0\forall a;b^2\ge0\forall b;c^2\ge0\forall c\)\(\Rightarrow a=b=c=0\)\(\Rightarrow\)\(M=\left(a-2005\right)^{2006}+\left(b-2005\right)^{2006}+\left(c-2005\right)^{2006}\)=\(\left(-2005\right)^{2006}+\left(-2005\right)^{2006}+\left(-2005\right)^{2006}\)=\(3.2005^{2006}\)

Hoàng Nguyễn Quỳnh Khanh
Xem chi tiết
Nguyễn Huyền Anh
27 tháng 1 2017 lúc 14:05

D= \(\frac{x^3+y^3+z^3-3xyz}{2\left(x^2+y^2+z^2-xy-yz-zx\right)}\) tử = (x+y)3+z3 -3xy(x+y) - 3xyz =(x+y+z)(x2+2xy+y2-xz- yz+z2)-3xy(x+y+z) = (x+y+z)(x2+y2+z2-xy-yz-zx)

do đó D=\(\frac{x+y+z}{2}\)