Tìm x,y thuộc Z thỏa
\(x^2+xy+y^2=x^2y^2\)
1.Tìm x;y thuộc N : x^3 -7=y^2
2.Tìm p;q thuộc P và x thuộc z thỏa mãn: x^5+px+3q=0
3, Tìm x;y thuộc Z thỏa mãn 6x^3-xy(11x+3y)+2y^3=6
Tìm 3 số x;y;z thỏa mãn:
(2y^2).x+x+y=(x^2)+(2y^2)+xy
Bài 1:Tìm số nguyên x thỏa mãn:
5x+7 là bội của x-2
Bài 2:Tìm x,y thuộc z biết:
a)xy+x=-15
b)xy+2-y=9
c)xy+2x+2y= -17
d)x+y=xy
e)x-y=6-2xy
Bài 1: Ta có 5x+7=5(x-2)+8
Để 5x+7 chia hết cho x-2 thì 5(x-2) +8 chia hết cho x-2
=> 8 chia hết cho x-2
x nguyên => x-2 nguyên => x-2 thuộc Ư (8)={-8;-4;-2;-1;1;2;4;8}
ta có bảng
x-2 | -8 | -4 | -2 | -1 | 1 | 2 | 4 | 8 |
x | -6 | -2 | 0 | 1 | 3 | 4 | 6 | 10 |
Bài 2:
a) xy+x=-15
<=> x(y+1)=-15
=> x, y+1 thuộc Ư (-15)={-15;-5;-3;-1;1;3;5;15}
Ta có bảng
x | -15 | -5 | -3 | -1 | 1 | 3 | 5 | 15 |
y+1 | 1 | 3 | 5 | 15 | -15 | -5 | -3 | -1 |
y | 0 | 2 | 4 | 14 | -16 | -6 | -4 | -2 |
b) xy+2-y=9
<=> y(x-1)=7
=> y, x-1 thuộc Ư (7)={-7;-1;1;7}
Ta có bảng
y | -7 | -1 | 1 | 7 |
x-1 | -1 | -7 | 7 | 1 |
x | 0 | -6 | 6 | 2 |
c) xy+2x+2y=-17
<=> x(y+2)+2(y+2)=-15
<=> (x+2)(y+2)=-15
<=> x+2; y+2 thuộc Ư (-15)={-15;-5;-3;-1;1;3;5;15}
Ta có bảng
x+2 | -15 | -5 | -3 | -1 | 1 | 3 | 5 | 15 |
x | -17 | -7 | -5 | -3 | -1 | 1 | 3 | 13 |
y+2 | 1 | 3 | 5 | 15 | -15 | -5 | -3 | -1 |
y | -1 | 1 | 3 | 13 | -17 | -7 | -5 | -3 |
\(5x+7⋮x-2\)
\(5\left(x-2\right)+17⋮x-2\)
\(17⋮x-2\)
\(\Rightarrow x-2\inƯ\left(17\right)=\left\{\pm1;\pm17\right\}\)
Bn tự lập bảng nha !
tìm x,y thuộc N* thỏa mãn
x2-xy+y^2=x^2y^2 - 5
tìm x,y thuộc N* thỏa mãn
x2-xy+y^2=x^2y^2 - 5
tìm x,y thuộc N* thỏa mãn
x2-xy+y^2=x^2y^2 - 5
tìm x,y thuộc N* thỏa mãn
x2-xy+y^2=x^2y^2 - 5
Tìm x,y thuộc Z thỏa mãn:
a,|2x+4|+|y-6|=0
b,|x-5|+|2y-2|=0
c,(x-2)(2y+1)=8
d,(8x)(4y+1)=20
e,(x+1)(xy-1)=3
g,(x+y-2)(2y+1)=9
a , |2x+4|+|y-6|=0
=> 2 x + 4 = 0 => x = 0
=> y - 6 = 0 => y = 6
Vậy x = 0 và y = 6
Tìm x,y thuộc Z thỏa : x+y+xy+2 = x^2+y^2