Cho mình hỏi 1 có phải là số nguyên tố không, lời giải chi tiết.
Bài 1: 350 + 1 có phải là tích hai số tự nhiên liên tiếp không
Bài 2: 232 + 1 có phải là số nguyên tố không
Mình cần lời giải rất chi là chi tiết./. mình đang cần gấp
Tks
bài 1) gọi tích 2 số nguyên liên tiếp là a(a+1)
Nếu a=3k => a(a+1)=3k(3k+1)=9k^2+3k chia hết cho 3
Nếu a=3k+1=> a(a+1)=3k+1(3k+1)=9k^2+3k+3k+1 chia 3 dư 1
Nếu a=3k+2 tương tự chia hết cho 3
Số 3^50+1 chia 3 dư 1(vô lý)
Vậy nó không phải là tích 2 số nguyên liên tiếp. CHÚC BẠN HỌC TỐT<3
Chứng minh rằng ∀n > 2 thì 2^n – 1 và 2^n + 1 không cùng là số nguyên tố
mọi người cho mình lời giải chi tiết nha, cảm ơn nhìu
hi mk sẽ chia sẻ câu hỏi này giúp bn
uhm, cảm ơn nha
Câu 1: Một số tự nhiên chia hết cho 4 có ba chữ số đều chẵn, khác nhau và khác 0. Chứng minh rằng tồn tại cách đổi vị trí các chữ số để được một số chia hết cho 4.( giải chi tiết mình tick cho )
Câu 2: Chứng minh rằng trong tất cả các số tự nhiên khác nhau có bảy chữ số lập bởi cả bảy chữ số 1,2,3,4,5,6,7 không có hai số nào mà một số chia hết cho số còn lại.( giải chi tiết mình tick cho )
Câu 3: Một số nguyên tố chia cho 30 có số dư là r. Tìm r biết rằng r không là số nguyên tố.( giải chi tiết mình tick cho )
cho n là số nguyên tố lớn hơn 3. Hỏi n2+2015 là số nguyên tố hay hợp số?
trình bày lời giải chi tiết giúp mik nha
Số nguyên tố không bao gời là số chẵn ( trừ số 2 ) và lúc nào cũng là số lẻ
Số lẻ + Số lẻ = Số chẵn
=> n + 2015 là hợp số
Cho n là số nguyên tố lớn hơn 3. Hỏi n^2 + 2006 là số nguyên tố hay hợp số?
Giải chi tiết giúp mình nha
Vì n lớn hơn 3 nên n có dạng 3k + 1 hoặc 3k + 2:
Với n = 3k +1 thì:
n^2 + 2006 = (3k+1). (3k+1) +2006
= 9.k.k + 3k+3k+1 + 2006
= 3.(3.k.k +1+1)+1+2006
= 3.(3.k.k +1+1) + 2007 chia hết cho 3
=> Với n = 3k+1 thì n^2 + 2006 là hợp số
Với n= 3k+2 thì:
(3k+2).(3k+2)+2006 = 9.k.k+6k+6k+4+2006
=3(3.k.k + 2k +2k)+4+2006
=3(3.k.k +2k+2k)+2010 chia hết cho 3
=>Với n = 3k+2 thì n^2 +2006 là hợp số
Vậy với mọi số nguyên tố n lớn hơn 3 thì n^2 +2006 là hợp số
(Hãy làm theo cách của mình đi, đúng đó.Từ đóhãy tick cho mình nha)
=
TH1: n = 3k + 1 => (3k + 1)2 + 2006 <=> 9k2 + 6k + 1 + 2006 = 3k(3k + 2) + 2007
3k(3k + 2) chia hết cho 3 và 2007 chia hết cho 3 =>[3k(3k + 2) + 2007] chia hết cho 3 (1)
TH2: n = 3k + 2 => (3k + 2)2 + 2006 <=> 9k2 + 12k + 4 + 2006 = 3k(3k + 4) + 2010
3k(3k + 4) chia hết cho 3 và 2010 chia hết cho 3 => [3k(3k + 4) + 2010] chia hết cho 3 (2)
Từ (1) và (2) => n2 + 2006 là hợp số
< = > Là số nguyên tố > 3
< = > n chia 3 dư 1 hoặc n chia 3 dư 2
Với n chia 3 dư 1;2 thì n2 chia 3 dư 1
< = > n2 + 2006 chia hết cho 3
< = > n2 + 2006 là hợp số
Các bạn ơi cho mình lời giải chi tiết bài này với:
Phân tích 96 ra thừa số nguyên tố rồi tìm các số x,y thõa mãn 2x + 1. 3 y = 96
Bạn nào có lời giải chi tiết và đầy đủ mk tick cho.
96 = 25.3
=> 2x+1.3y = 25.3
=> x + 1 = 5 và y = 1
=> x = 4
Vậy x = 4; y = 1
96 =25.3
2x+1 . 3y =25 .3
=> x+1 = 5 => x =4
Và y =1
Vậy x =4 ; y =1
1. Tìm số nguyên tố p sao cho: x^2 + y^2 - 3xy = p-1
2. Tìm số tự nhiên m,n sao cho m^4 + 4n^4 là số nguyên tố.
(Mong các bạn cho mình xin được lời giải chi tiết)
Ba số nguyên tố có tổng là 106. Trong các số hạng đó, số nguyên tố lớn nhất có thể là...
Giúp mình giải chi tiết câu hỏi này nha, cảm ơn các bạn nhiều
101 nhé, 100% luôn ,k cho mình nhé :3
bạn giải chi tiết giúp mình đi Nguyễn Xuân Thắng
ba số nguyên tố có tổng là 106 -1 số chẵn nên trong tổng này có 1 số hạng là 2.
Vậy tổng 2 số kia là 104=101+3 nên số nguyên tố lớn nhất thỏa mãn có thể là 101
Có bao nhiêu số nguyên dương trong tập hợp các số từ 1 đến 1000, bao gồm, là bội số của 2, 3 và 5 nhưng không phải là 8?
Trả lời nhận thẻ 50k
Lời giải chi tiết nha
Nhận thẻ qua mình nhắn tin
Copy không dc nha
Ta có: \(BCNN\left(2;3;5\right)=30\)
\(\Rightarrow BC\left(2;3;5\right)=\left\{30;60;90;120;...\right\}\)
Mà theo đề các số này <1000
Nên \(BC\left(2;3;5\right)< 1000=\left\{30;60;90;....990\right\}\)(1)
Tập hợp (1) có tất cả: \(\frac{990-30}{30}+1=33\)(hạng tử)
Mặt khác, trong tập hợp (1) các số là\(B\left(8\right)=\left\{120;240;...;960\right\}\)(2)
Tập hợp (2) có tất cả: \(\frac{960-120}{120}+1=8\)(hạng tử)
Vậy từ 1 đến 1000 có tất cả \(33-8=25\)số vừa chia hết cho 2; 3 và 5 mà không chia hết cho 8