Không dùng máy tính So sánh A=2014.2016 và B=20152.
2. Không tính kết quả cụ thể, hãy so sánh A và B, biết:
a) A = 2012.2018 và B = 2014.2016
b) C = 2019.2021 và D = 20202
Không tính kết quả cụ thể, hãy so sánh A và B, biết:
a) A = 2012.2018 và B = 2014.2016
b) C = 2019.2021 và D = 20202
ta có \(A=\left(2015-3\right)\left(2015+3\right)=2015^2-9< 2015^2-1=\left(2015-1\right)\left(2015+1\right)=B\)
Vậy A<B
b. ta có \(C=\left(2020-1\right)\left(2020+1\right)=2020^2-1< 2020^2=D\text{ nên }C< D\)
Không tính kết quả cụ thể hãy so sánh a và b biết:
A=2012.2018 B=2014.2016
\(A=2012.2018=\left(2015-3\right)\left(2015+3\right)\)
\(=2015^2-9\)
\(B=2014.2016=\left(2015-1\right)\left(2015+1\right)\)
\(=2015^2-1\)
Do \(2015^2-9< 2015^2-1\)
nên \(A< B\)
Không tính kết quả cụ thể, hãy so sánh A và B, biết:
a) A = 2012.2018 và B = 2014.2016
b) A = 2019.2021 và B = 20202
Không tính kết quả cụ thể, hãy so sánh A và B, biết:
a) A = 2012.2018 và B = 2014.2016
b) A = 2019.2021 và B = 20202
a, A = 2012 . 2018
=> A = ( 2014 - 2 ) . 2018
=> A = 2014.2018 - 2.2018
b, B = 2014 . 2016
=> B = 2014 . ( 2018 - 2 )
=> B = 2014 . 2018 - 2014 .2
Vì 2.2018 > 2 .2014
=> A > B
b, A = 2019 . 2021
=> A = ( 2020 - 1 ) . 2021
=> A = 2020.2021 - 2021
b, B = 20202
=> B = 2020 . 2020
=> B = ( 2021 - 1 ) . 2020
=> B = 2021.2020 - 2020
Vì 2020.2021-2021 < 2021.2020 - 2020
=> A < B
Câu a, mik làm nhầm tí nhé :
Sửa Vì 2014 . 2018 - 2.2018 < 2014.2018 - 2.2014
=> A < B
\(8^2=64=32+2\sqrt{16^2}\)
\(\left(\sqrt{15}+\sqrt{17}\right)^2=32+2\sqrt{15.17}=32+2\sqrt{\left(16-1\right)\left(16+1\right)}\)
\(=32+2\sqrt{16^2-1}\)
\(< =>8^2>\left(\sqrt{15}+\sqrt{17}\right)^2\)
\(8>\sqrt{15}+\sqrt{17}\)
\(\left(\sqrt{2019}+\sqrt{2021}\right)^2=4040+2\sqrt{2019.2021}\)
\(=4040+2\sqrt{\left(2020-1\right)\left(2020+1\right)}=4040+2\sqrt{2020^2-1}\)
\(\left(2\sqrt{2020}\right)^2=8080=4040+2\sqrt{2020^2}\)
\(< =>\sqrt{2019}+\sqrt{2021}< 2\sqrt{2020}\)
mik chọn điền
<
mik lười chép ại đề bài
Hãy so sánh A và B (không dùng máy tính)biết:
A=2011*2011
B=2010*2012
Không dùng máy tính hãy so sánh A=10^2016+2018/10^2017+2018 và B=10^2017+2018/10^2018+2018
Ta có: \(A=\frac{10^{2016}+2018}{10^{2017}+2018}\)\(\Rightarrow10A=\frac{10^{2017}+2018.10}{10^{2017}+2018}=\frac{10^{2017}+2018+2018.9}{10^{2017}+2018}=1+\frac{2018.9}{10^{2017}+2018}\)
Tương tự ta có: \(10B=1+\frac{2018.9}{10^{2018}+2018}\)
Vì \(2017< 2018\)\(\Rightarrow10^{2017}< 10^{2018}\)\(\Rightarrow10^{2017}+2018< 10^{2018}+2018\)
\(\Rightarrow\frac{2018.9}{10^{2017}+2018}>\frac{2018.9}{10^{2018}+2018}\)\(\Rightarrow1+\frac{2018.9}{10^{2017}+2018}>1+\frac{2018.9}{10^{2018}+2018}\)
hay \(10A>10B\)\(\Rightarrow A>B\)
Vậy \(A>B\)
Ta có : \(A=\frac{10^{2016}+2018}{10^{2017}+2018}\)
\(\Rightarrow10A=\frac{10^{2017}+20180}{10^{2017}+2018}=\frac{10^{2017}+2018+18162}{10^{2017}+2018}=1+\frac{18162}{10^{2017}+2018}\)
Ta có : \(B=\frac{10^{2017}+2018}{10^{2018}+2018}\)
\(\Rightarrow\frac{10^{2018}+20180}{10^{2018}+2018}=\frac{10^{2018}+2018+18162}{10^{2018}+2018}=1+\frac{18162}{10^{2018}+2018}\)
Vì \(10^{2017}+2018< 10^{2018}+2018\) nên \(\frac{18162}{10^{2017}+2018}>\frac{18162}{10^{2018}+2018}\)
\(\Rightarrow1+\frac{18162}{10^{2017}+2018}>1+\frac{18162}{10^{2017}+2018}\Rightarrow10A>10B\Rightarrow A>B\)
Vậy A > B
Làm khác bạn kia 1 xíu à
Toán 6:
Không dùng máy tính hãy so sánh A= 5^2020+1/5^2021+1
và B=10^2019+1/10^2020+1