CMR:
\(\frac{1}{3}\)+\(\frac{1}{3^2}\)+\(\frac{1}{3^3}\)+.........+\(\frac{1}{3^{2015}}\)<\(\frac{1}{2}\)
Cmr
\(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2015}}< \frac{1}{2}\)
CMR\(\frac{1}{3}+\frac{1}{3^2}+....+\frac{1}{3^{2015}}< \frac{1}{2}\)
Cho \(A=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2017};B=\frac{2016}{1}+\frac{2015}{2}+\frac{2014}{3}+...+\frac{1}{2016}\).CMR B/A là số nguyên
Ta có :
\(B=\frac{2016}{1}+\frac{2015}{2}+\frac{2014}{3}+...+\frac{1}{2016}\)
\(B=\left(\frac{2015}{2}+1\right)+\left(\frac{2014}{3}+1\right)+...+\left(\frac{1}{2016}+1\right)+1\)
\(B=\frac{2017}{2}+\frac{2017}{3}+...+\frac{2017}{2016}+\frac{2017}{2017}\)
\(B=2017.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}+\frac{1}{2017}\right)\)
\(\Rightarrow\frac{B}{A}=\frac{2017.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}+\frac{1}{2017}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2017}}=2017\)
Vậy \(\frac{B}{A}\)là số nguyên
CMR : \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2015^2}+\frac{1}{2015}<1\)
1/22+1/32+1/42+......+1/20152+1/20162 < 1/1.2+1/2.3+1/3.4+.....+1/2014.2015+1/2015.2016
Mà: 1/1.2+1/2.3+1/3.4+.....+1/2014.2015+1/2015.2016
=1-1/2+1/2-1/3+1/3-1/4+.......+1/2014-1/2015+1/2015-1/2016
=1-1/2016
=2016/2016-1/2016
=2015/2016 <1
Nên 1/22+1/32+1/42+......+1/20152+1/20162 < 1
Cho A=\(\frac{1}{3^2}+\frac{1}{5^2}+\frac{1}{7^2}+...+\frac{1}{2015^2}\) Cmr A<\(\frac{3}{25}\)
cmr : \(y=\frac{1}{2\sqrt{1}}+\frac{1}{3\sqrt{2}}+\frac{1}{4\sqrt{3}}+...+\frac{1}{2016\sqrt{2015}}>\frac{1931}{1975}\)
CMR: \(A=\frac{1}{2\sqrt{1}}+\frac{1}{3\sqrt{2}}+\frac{1}{4\sqrt{3}}+...+\frac{1}{2016\sqrt{2015}}<2\).
Với mọi số nguyên dương n ta có:
\(\frac{1}{\left(n+1\right)\sqrt{n}}=\frac{\sqrt{n}}{n\left(n+1\right)}=\sqrt{n}\left(\frac{1}{n}-\frac{1}{n+1}\right)=\sqrt{n}\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n+1}}\right)\)
Ta có: \(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n+1}}<\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n}}=\frac{2}{\sqrt{n}}\)
\(\Rightarrow\frac{1}{\left(n+1\right)\sqrt{n}}<\sqrt{n}\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\frac{2}{\sqrt{n}}=\frac{2}{\sqrt{n}}-\frac{2}{\sqrt{n+1}}\). Do đó ta có:
\(A<\frac{2}{\sqrt{1}}-\frac{2}{\sqrt{2}}+\frac{2}{\sqrt{2}}-\frac{2}{\sqrt{3}}+\frac{2}{\sqrt{3}}-\frac{2}{\sqrt{4}}+...+\frac{2}{\sqrt{2015}}-\frac{2}{\sqrt{2016}}=2-\frac{2}{\sqrt{2016}}<2\)
Vậy A < 2.
Cho \(A=\frac{1}{5}+\frac{2}{5^2}+\frac{3}{5^3}+\frac{4}{5^4}+...+\frac{2015}{5^{2015}}\)
CMR a) A<1
b) A<\(\frac{1}{16}\)