Cho 6 số nguyên dương thỏa mãn : a<b<c<d<m<n
Chứng minh rằng: \(\frac{a+d}{a+b+c+d+m+n}
cho số nguyên dương N (10<=N<=10^6). hãy đếm số lượng các số nguyên dương a nhỏ hơn N (10<=a<=N) thỏa mãn điều kiện: a có ít nhất 2 chữ số, đồng thời a có tất cả các chữ số giống nhau và chia hết cho 9.
viết chương trình đếm các số a thỏa mãn
cho số nguyên dương n>6 thỏa mãn ( n-1)! +1 chia hết cho n. chứng minh n là số nguyên tố
Tìm các số nguyên dương a, b thỏa mãn :5/a-b/3=1/6
Tìm các số nguyên dương a, b thỏa mãn :5/a-b/3=1/6
quy dong mau len rui tinh theo phuong phap uoc ay cau
Cho một ý là \(\frac{5}{a}-\frac{b}{3}=\frac{1}{6}\)
cho từng vd : a các cặp số có mẫu chung là 6 là
2,3 : 6,3;
cho các cặp số 1 \(\frac{5}{2}-\frac{b}{3}=\frac{1}{6}\)
2 \(\frac{5}{6}-\frac{b}{3}=\frac{1}{6}\)
cho các số b : \(\frac{5}{6,2}\)+ số đối của b thì số đó âm là âm hoặc dương
có một số vd -1,1,2,-2...7 sẽ có có thể
nên => \(\frac{5}{2}-\frac{7}{3}=\frac{1}{6}\)
tìm các số nguyên dương a,b thỏa mãn ab=120 và (a,b)=6
a)Tìm các số nguyên dương x, y thỏa mãn x+3 chia hết cho y, y+3 chia hết cho x
b)Tìm các số nguyên dương x, y thỏa mãn xy+x+y+2 chia hết cho cả x và y.
cho các số nguyên dương a,b,c thỏa mãn a^3 + b^3 + c^3 = 6(a + b + c). Tìm giá trị nhỏ nhất của tổng a + b+ c
Từ đề bài, a, b, c có giá trị là 1,2,3. Suy ra giá trị nhỏ nhất của tổng a+b+c= 1+2+3=6. Vậy giá trị nhỏ nhất của tổng a+b+c là 6.
a) CHO 3 SỐ DƯƠNG a , b , c THỎA MÃN abc=1 . CMR: (a+b)(b+c)(c+a)>= 2(1+a+b+c)
b) CHO m,n LÀ 2 SỐ NGUYÊN DƯƠNG THỎA MÃN: m^2+n^2+2018 CHIA HẾT CHO mn. CMR m,n LÀ 2 SỐ LẺ VÀ NGUYÊN TỐ CÙNG NHAU
m.n/(m^2+n^2 ) và m.n/2018
- Đặt (m,n)=d => m= da;n=db ; (a,b)=1
=> d^2(a^2+b^2)/(d^2(ab)) = (a^2+b^2)/(ab) => b/a ; a/b => a=b=> m=n=> ( 2n^2+2018)/n^2 =2 + 2018/n^2 => n^2/2018
=> m=n=1 ; lẻ và nguyên tố cùng nhau. vì d=1
Vẽ SH _I_ (ABCD) => H là trung điểm AD => CD _I_ (SAD)
Vẽ HK _I_ SD ( K thuộc SD) => CD _I_ HK => HK _I_ (SCD)
Vẽ AE _I_ SD ( E thuộc SD).
Ta có S(ABCD) = 2a² => SH = 3V(S.ABCD)/S(ABCD) = 3(4a³/3)/(2a²) = 2a
1/HK² = 1/SH² + 1/DH² = 1/4a² + 1/(a²/2) = 9/4a² => HK = 2a/3
Do AB//CD => AB//(SCD) => khoảng cách từ B đến (SCD) = khoảng cách từ A đến (SCD) = AE = 2HK = 4a/3
Tìm số nguyên dương n thỏa mãn điều kiện ( n+5)( n+6) chia hết cho 6n
cho a b c là các số nguyên dương thỏa mãn c + 1/b = a + b/a chứng minh ab là lập phương của 1 số nguyên dương
Gọi \(d=gcd\left(a;b\right)\) khi đó \(a=dm;b=dn\) với \(\left(m;n\right)=1\)
Ta có:
\(c+\frac{1}{b}=a+\frac{b}{a}\Leftrightarrow c=\frac{b}{a}+a-\frac{1}{b}=\frac{dn}{dm}+dm-\frac{1}{dn}\)
\(=\frac{n}{m}+dm-\frac{1}{dn}=\frac{dn^2+d^2m^2n-m}{dmn}\)
Khi đó \(dn^2+d^2m^2n-m⋮dmn\Rightarrow m⋮n\) mà \(\left(m;n\right)=1\Rightarrow n=1\Rightarrow m=d\)
Khi đó \(ab=dm\cdot dn=d^3\) là lập phương số nguyên dương
Cho a,b là 2 số nguyên dương thỏa mãn tổng,hiệu,tích,thương của chúng là 4 số nguyên dương khác nhau.Tìm GTNN của a + b