Bài 45 (trang 27 SGK Toán 9 Tập 1)
So sánh
a) $3 \sqrt{3}$ và $\sqrt{12}$ ; b) $7$ và $3 \sqrt{5}$ ;
c) $\dfrac{1}{3} \sqrt{51}$ và $\dfrac{1}{5} \sqrt{150}$ ; d) $\dfrac{1}{2} \sqrt{6}$ và $6 \sqrt{\dfrac{1}{2}}$.
Bài 27 (trang 16 SGK Toán 9 Tập 1)
So sánh
a) $4$ và $2\sqrt{3}$ ; b) $-\sqrt{5}$ và $-2$.
a) Ta có:
4>3⇔√4>√3⇔2>√3⇔2.2>2.√3⇔4>2√34>3⇔4>3⇔2>3⇔2.2>2.3⇔4>23
Cách khác:
Ta có:
⎧⎨⎩42=16(2√3)2=22.(√3)2=4.3=12{42=16(23)2=22.(3)2=4.3=12
Vì 16>12⇔√16>√1216>12⇔16>12
Hay 4>2√34>23.
b) Vì 5>4⇔√5>√45>4⇔5>4
⇔√5>2⇔5>2
⇔−√5<−2⇔−5<−2 (Nhân cả hai vế bất phương trình trên với −1−1)
Vậy −√5<−2−5<−2.
a, Ta có : \(4=\sqrt{16}\); \(2\sqrt{3}=\sqrt{4.3}=\sqrt{12}\)
Do 12 < 16 hay \(2\sqrt{3}< 4\)
b, Ta có : \(-2=-\sqrt{4}\)
Do \(4< 5\Rightarrow\sqrt{4}< \sqrt{5}\Rightarrow-\sqrt{4}>-\sqrt{5}\)
Vậy \(-2>-\sqrt{5}\)
a) \(2\sqrt{3}=\sqrt{3\cdot2^2}=\sqrt{12}\); \(4=\sqrt{16}\)
Vì \(\sqrt{12}< \sqrt{16}\)=> \(4>2\sqrt{3}\)
b) \(-2=-\sqrt{4}\)
Vì \(\sqrt{4}< \sqrt{5}\)=> \(-\sqrt{4}>-\sqrt{5}\)hay \(-2>-\sqrt{5}\)
Bài 45 (trang 27 SGK Toán 9 Tập 1): So sánh:
a) `3\sqrt3=\sqrt(3^2 .3)=\sqrt27`
\sqrt12=\sqrt12`
`=> \sqrt27 > \sqrt12`
`=> 3\sqrt3 > \sqrt12`
b) `7=\sqrt(7^2)=\sqrt49`
`3\sqrt5=\sqrt(3^2 .5)=\sqrt45`
`=> \sqrt49>\sqrt45`
`=>7>3\sqrt5`
c) `1/3 \sqrt51 = \sqrt( (1/3)^2 .51) =\sqrt(17/3)`
`1/5 \sqrt150 =\sqrt( (1/5)^2 .150)=\sqrt6`
`=> \sqrt(17/3) < \sqrt6`
`=> 1/3 \sqrt51 < 1/5 \sqrt150`
d) `1/2 \sqrt6 = \sqrt(3/2)`
`6\sqrt(1/2) =\sqrt(18)`
`=> \sqrt(3/2) < \sqrt18`
`=> 1/2 \sqrt6 < 6\sqrt(1/2)`.
Bài 2 (trang 6 SGK Toán 9 Tập 1)
So sánh
a) $2$ và $\sqrt{3}$ ; b) $6$ và $\sqrt{41}$ ; c) $7$ và $\sqrt{47}$.
Trả lời:
a) ta có: 2 = √4
Vì 4 > 3 nên √4 > √3
Vậy 2 > √3
b) Ta có: 6 = √36
Vì 36 < 41 nên √36 < √41
Vậy 6 < √41
c) ta có 7 = √49
Vì 49 > 47 nên √49 > √47
Vậy 7 > √47
Bài 69 (trang 36 SGK Toán 9 Tập 1)
So sánh
a) 5 và $\sqrt[3]{123}$ ; b) $5 \sqrt[3]{6}$ và $6 \sqrt[3]{5}$.
a) mà suy ra .
b) Đưa về so sánh với . Kết quả .
Bài 26 (trang 16 SGK Toán 9 Tập 1)
a) So sánh $\sqrt{25+9}$ và $\sqrt{25}+\sqrt{9}$ ;
b) Với $a>0$ và $b>0$, chứng minh $\sqrt{a+b}<\sqrt{a}+\sqrt{b}$.
a) Ta có:
+)√25+9=√34+)25+9=34.
+)√25+√9=√52+√32=5+3+)25+9=52+32=5+3
=8=√82=√64=8=82=64.
Vì 34<6434<64 nên √34<√6434<64
Vậy √25+9<√25+√925+9<25+9
b) Với a>0,b>0a>0,b>0, ta có
+)(√a+b)2=a+b+)(a+b)2=a+b.
+)(√a+√b)2=(√a)2+2√a.√b+(√b)2+)(a+b)2=(a)2+2a.b+(b)2
=a+2√ab+b=a+2ab+b
=(a+b)+2√ab=(a+b)+2ab.
Vì a>0, b>0a>0, b>0 nên √ab>0⇔2√ab>0ab>0⇔2ab>0
⇔(a+b)+2√ab>a+b⇔(a+b)+2ab>a+b
⇔(√a+√b)2>(√a+b)2⇔(a+b)2>(a+b)2
⇔√a+√b>√a+b⇔a+b>a+b (đpcm)
a, Ta có : \(\sqrt{25+9}=\sqrt{34}\)
\(\sqrt{25}+\sqrt{9}=5+3=8=\sqrt{64}\)
mà 34 < 64 hay \(\sqrt{25+9}< \sqrt{25}+\sqrt{9}\)
b, \(\sqrt{a+b}< \sqrt{a}+\sqrt{b}\)
bình phương 2 vế ta được : \(a+b< a+2\sqrt{ab}+b\)
\(\Leftrightarrow2\sqrt{ab}>0\)vì \(a;b>0\)nên đẳng thức này luôn đúng )
Vậy ta có đpcm
a) \(\sqrt{25+9}=\sqrt{34}\)
\(\sqrt{25}+\sqrt{9}=5+3=8=\sqrt{64}\)
=> \(\sqrt{25+9}< \sqrt{25}+\sqrt{9}\)
b) Vì a,b > 0, bình phương hai vế ta có :
a + b < a + 2√ab + b
<=> -2√ab < 0 <=> 2√ab > 0 ( đúng vì a,b > 0 )
=> đpcm
Bài 31 (trang 19 SGK Toán 9 Tập 1)
a) So sánh $\sqrt{25-16}$ và $\sqrt{25}-\sqrt{16}$ ;
b) Chứng minh rằng, với $a>b>0$ thì $\sqrt{a}-\sqrt{b}<\sqrt{a-b}$.
a, Ta có \(\sqrt{25-16}=\sqrt{9}=3\)
\(\sqrt{25}-\sqrt{16}=5-4=1\)
Do 3 > 1 nên \(\sqrt{25-16}>\sqrt{25}-\sqrt{16}\)
a) căn 25 - 16 > căn 25 - căn 16
b)Với nên đều xác định
Để so sánh và ta quy về so sánh và .
+) .
+)
.
Do nên
Do
(đpcm)
Vậy .
a) +) .
+) .
Vì nên .
Vậy .
b) Với nên đều xác định.
Để so sánh và ta quy về so sánh và .
+) .
+) .
Do nên
Do
(đpcm)
Vậy .
Bài 65 (trang 34 SGK Toán 9 Tập 1)
Rút gọn rồi so sánh giá trị của $M$ với $1$, biết
$M=\left(\dfrac{1}{a-\sqrt{a}}+\dfrac{1}{\sqrt{a}-1}\right): \dfrac{\sqrt{a}+1}{a-2 \sqrt{a}+1}$ với $a>0$ và $a \neq 1$.
Rút gọn ta được:
M=√a−1/√a
Viết M ở dạng M=1−1/√a
suy ra M<1
Với \(x>0;x\ne1\)
\(M=\left(\frac{1}{a-\sqrt{a}}+\frac{1}{\sqrt{a}-1}\right):\frac{\sqrt{a}+1}{a-2\sqrt{a}+1}\)
\(=\left(\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}+\frac{\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}\right):\frac{\sqrt{a}+1}{\left(\sqrt{a}-1\right)^2}\)
\(=\frac{\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}.\frac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}=\frac{\sqrt{a}-1}{\sqrt{a}}\)
\(=1-\frac{1}{\sqrt{a}}< 1\)hay M < 1
M = 1 - 1/√a < 1
Bài 48 (trang 29 SGK Toán 9 Tập 1)
Khử mẫu của biểu thức lấy căn
$\sqrt{\dfrac{1}{600}}; \sqrt{\dfrac{11}{540}}$ ; $\sqrt{\dfrac{3}{50}} ; \sqrt{\dfrac{5}{98}}$ ; $\sqrt{\dfrac{(1-\sqrt{3})^{2}}{27}}$
\(\sqrt{\dfrac{1}{600}}\)=\(\sqrt{\dfrac{1}{10^2\cdot6}}\)=\(\sqrt{\dfrac{1\cdot6}{10^2\cdot6\cdot6}}\)=\(\dfrac{\sqrt{6}}{60}\)
\(\sqrt{\dfrac{11}{540}}\)=\(\sqrt{\dfrac{11\cdot540}{540\cdot540}}\)=\(\dfrac{\sqrt{5940}}{540}\)=\(\dfrac{\sqrt{165}}{90}\)
\(\sqrt{\dfrac{3}{50}}\)=\(\sqrt{\dfrac{3\cdot50}{50\cdot50}}\)=\(\dfrac{\sqrt{150}}{50}\)=\(\dfrac{\sqrt{6}}{10}\)
\(\sqrt{\dfrac{5}{98}}\)=\(\sqrt{\dfrac{5\cdot98}{98\cdot98}}=\dfrac{\sqrt{490}}{98}=\dfrac{\sqrt{10}}{14}\)
\(\sqrt{\dfrac{\left(1-\sqrt{3}\right)^2}{27}}=\dfrac{3-\sqrt{3}}{9}\)
\(\sqrt{\dfrac{1}{600}}=\dfrac{\sqrt{6}}{60}\)
\(\sqrt{\dfrac{11}{540}}=\dfrac{\sqrt{165}}{90}\)
\(\sqrt{\dfrac{3}{50}}=\dfrac{\sqrt{6}}{10}\)
\(\sqrt{\dfrac{5}{98}}=\dfrac{\sqrt{10}}{14}\)
\(\sqrt{\dfrac{\left(1-\sqrt{3}\right)^2}{27}}=\dfrac{3-\sqrt{3}}{9}\)
Bài 46 (trang 27 SGK Toán 9 Tập 1)
Rút gọn các biểu thức sau với $x \ge 0$:
a) $2 \sqrt{3x}-4 \sqrt{3x}+27-3 \sqrt{3 x}$ ; b) $3 \sqrt{2 x}-5 \sqrt{8 x}+7 \sqrt{18 x}+28$.
Rút gọn các biểu thức sau với x≥0x≥0:
a) 2\(\sqrt{3x}\)-4\(\sqrt{3x}\)+27-3\(\sqrt{3x}\)=27-5\(\sqrt{3x}\)
b)3\(\sqrt{2x}\)-5\(\sqrt{8x}\)+7\(\sqrt{18x}\)+28
=3\(\sqrt{2x}\)-10\(\sqrt{2x}\)+21\(\sqrt{2x}\)+28
=14\(\sqrt{2x}\)+28=14(\(\sqrt{2x}\)+2)
a) \(2\sqrt{3x}-4\sqrt{3x}+27-3\sqrt{3x}\)
\(=\left(2\sqrt{3x}-4\sqrt{3x}-3\sqrt{3x}\right)+27\)
\(=-5\sqrt{3x}+27\)
b) \(3\sqrt{2x}-5\sqrt{8x}+7\sqrt{18x}+28\)
\(=3\sqrt{2x}-5\sqrt{4.2x}+7\sqrt{9.2x}+28\)
\(=3\sqrt{2x}-5\sqrt{2^2.2x}+7\sqrt{3^2.2x}+28\)
\(=3\sqrt{2x}-5.2\sqrt{2x}+7.3\sqrt{2x}+28\)
\(=\left(3\sqrt{2x}-5.2\sqrt{2x}+7.3\sqrt{2x}\right)+28\)
\(=\left(3-10+21\right)\sqrt{2x}+28\)
\(=14\sqrt{2x}+28\)