Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng Tử Lạnh Lùng
Xem chi tiết
Nohara Shinnosuke
6 tháng 1 2017 lúc 20:46

Lớp 7 mà bài này ko làm được hả anh trai

momozono nanami
Xem chi tiết
Nguyễn Quang Tùng
6 tháng 1 2017 lúc 20:50

n^3 + 17n = n^3 - n + 18n 

                = n(n^2-1) + 18n

                = n(n-1)(n+1) + 18n 

nhận xét n, n-1 , n+1 là 3 số tự nhiên liên tiếp nên có 1 số chia hết cho 3 và ít nhất 1 số  chia hết cho 2 

nên n(n-1)(n+1) chia hết cho 2 và 3 mà 2 và 3 nguyên tố cùng nhau nên n(n-1)(n+1) chia hết cho 6

hay n^3 - n chia hết cho 6 

và 18n chia hết cho 6 

=> n^3 -n + 18n chia hết cho 6 

hay n^3 + 17n chia hết cho 6

Nguyễn Thành Công
Xem chi tiết
Lê Hồng Ngọc
Xem chi tiết
Nguyễn Ngọc Quý
30 tháng 11 2015 lúc 10:46

Giả sử n = 1 , ta có:

A= 13 - 1.17

 = 1 - 17 = -16

Không chia hết cho 6 

võ công hoàng
24 tháng 12 2020 lúc 16:55

sai

ví dụ n>2

giả sử n=3

=>33-17.3=-24 chia hết cho 6

Khách vãng lai đã xóa
Trần Long Tăng
Xem chi tiết
𝐓𝐡𝐮𝐮 𝐓𝐡𝐮𝐲𝐲
23 tháng 9 2017 lúc 21:22

Trần Long Tăng

Ta có :

\(n^3+11n\)

\(=n^3-n+12n\)

\(=n\left(n^2-1\right)+12n\)

\(=\left(n-1\right)\left(n-1\right)n+12n\)

Vì \(n-1\text{ };\text{ }n\text{ };\text{ }n+1\)là tích 3 số nguyên liên tiếp nên : \(n\left(n-1\right)\left(n+1\right)\) chia hết cho 6 .

Mà 12n chia hết cho 6 .

\(\Rightarrow n^3+11n\)chia hết cho 6 .

Trương Quang Thiện
20 tháng 9 2018 lúc 21:10

Cho a,b,c khác 0 và a+b+c=0.Tính giá trị biểu thức

Q=1/a^2+b^2-c^2 + 1/b^2+c^2-a^2 +1/a^2+c^2-b^2

♥
15 tháng 4 2019 lúc 7:59

B=n3+17n=n3-n+18n

vì 18n chia hết cho 6          (1)

=> ta phải chứng minh n3-n chia hết cho 6

ta có: n3-n=n(n2-1)=n(n-1)(n+1)

vì tích của 2 số tự nhiên liên tiếp chi hết cho 6               (2)

từ (1) và (2)=> B chia hết cho 6

Lê Hồng Ngọc
Xem chi tiết
Đoàn Hào
Xem chi tiết
Đoàn Lê Gia Huy
Xem chi tiết
Đoàn Thị Huyền Đoan
1 tháng 8 2016 lúc 7:50

\(B=n^3+17n=n\left(n+17\right)\)

Tích của 2 số cách nhau 17 đơn vị thì chia hết cho 6. Vậy B chia hết cho 6.

♥
15 tháng 4 2019 lúc 7:59

B=n3+17n=n3-n+18n

vì 18n chia hết cho 6          (1)

=> ta phải chứng minh n3-n chia hết cho 6

ta có: n3-n=n(n2-1)=n(n-1)(n+1)

vì tích của 2 số tự nhiên liên tiếp chi hết cho 6               (2)

từ (1) và (2)=> B chia hết cho 6 

Nguyễn Minh Hiển
Xem chi tiết
Nguyễn Anh Quân
20 tháng 12 2017 lúc 12:57

17n^2+1 chia hết cho 6 hay 17n^2+1 chẵn => 17n^2 lẻ => n^2 lẻ => n lẻ => n ko chia hết cho 2

Mà 2 nguyên tố => (n,2) = 1

17n^2+1 chia hết cho 6 => 17n^2+1 chia hết cho 3 => 17n^2 ko chia hết cho 3 => n^2 ko chia hết cho 3 ( vì 17 và 3 là 2 số nguyên tố cùng nhau) => n ko chia hết cho 3

Mà 3 nguyên tố => (n,3) = 1

=> ĐPCM

k mk nha