chứng minh tích của 4 số tự nhiên liên tiếp cộng cho 1 là một số chính phương
a) Chứng minh rằng trong hai số tự nhiên liên tiếp có một số tự nhiên chhia hết cho 2
b) Chứng minh rằng trong ba số tư nhiên liên tiếp có một số chia hết cho 3
c) Chứng minh tích của hai số chẵn liên tiếp chia hết cho 4
c)
gọi 2 số chẳn liên tiếp là 2k ;2k+2 (k thuộc N)
ta có \(2k.\left(2k+2\right)=2k.2k+2k.2\)
\(=2.2.k.k+4k\)
\(=4k^2+4k\)
mà \(4k^2+4k\) chia hết cho 4
=>\(2k.\left(2k+2\right)\) chia hết cho 4
a)Goi 2 so tu nhien lien tiep la a;a+1
Neu a la so chan:a.(a+1) la so chan hay a.(a+1) chia het cho 2
Neu a la so le:a+1 la so le
Vay tich2 so tu nhien lien tiep chia het cho 2
a)
gọi 2 số tự nhiên liên tiếp là 2k;2k+1. ta có:
*nêu 2k lẻ=>2k+1 chẳn =>2k+1 chia hết cho 2
*nếu 2k+1 lẻ=> 2k chẳn =>2k chia hết cho 2
vậy DPCM
Hãy chứng minh rằng số 111222 là tích của 2 số tự nhiên liên tiếp
chứng minh rằng tổng bình phương 5 số tự nhiên liên tiếp không thể là số chính phương
Bài 7 : Chứng minh rằng :
a. Tích của 3 số tự nhiên liên tiếp chia hết cho 9 .
b. Tích của 5 số tự nhiên liên tiếp chia hết cho 120 .
cm rằng tổng các bình phương của 4 số tự nhiên liên tiếp không thể là 1 số chính phương
gọi 4 số tn liên tiếp là A=a(a+1)(a+2)(a+3)=>A=.....
Đặt a^2+3a+1=t =>A=t^2-1 (dpcm)
Tìm 3 số tự nhiên liên tiếp, biết rằng nếu cộng 3 tích, mỗi tích là tích của 2 trong 3 số đó thì được 26
Gọi 3 số đó lần lượt là x-1;x;x+1
(x-1)x+x(x+1)+(x+1)(x-1)=26
<=>x2-x+x2+x+x2-1=26
<=>3x2-1=26
<=>3x2=27
<=>x2=9
<=>x=3
Vậy 3 số đó lần lượt là 2;3;4
Chứng minh tích của 4 số tự nhiên liên tiếp chia hết cho 24
Đáp án:
Vì bốn số liên tiếp phải có 1 số chia hết cho 4 nên tích đó chia hết cho 4.
Vd: 1*2*3*4 thì có 4 chia hết cho 4. thử tính: 1*2*3*4=24, 24/4=6 nên chia hết cho 4.
Vd: 7*8*9*10 thì có 8 chia hết cho 4. thử tính: 7*8*9*10=5040, 5040/4=1260 nên chia hết cho 4.
Vd: 27*28*29*30 thì có 28 chia hết cho 4. thử tính: 27*28*29*30=657220, 657220/4=164430 nên chia hết cho 4.
Trong 4 số tự nhiên liên tiếp sẽ có 1 số \(⋮\) 2, 1 số \(⋮\) 3, 1 số \(⋮\) 4.
Mà 2x 3x 4= 24.
=> Tích 4 số tự nhiên liên tiếp \(⋮\) 24.
a) chứng minh rằng số có dạng n6 - n4 + 2n3 + 2n2 trong đó n > 1 và là số tự nhiên không phải là số chính phương.
b) giả sử N = 1.3.5.7...2009.2011
Chứng minh rằng trong 3 số nguyên liên tiếp 2N - 1, 2N, 2N + 1 không số nào là số chính phương.
chứng minh 11..1(100 số 1)22..2(100 số 2) là tích của 2 số tự nhiên liên tiếp