Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đỗ Hạnh Nguyên
Xem chi tiết
Steolla
2 tháng 9 2017 lúc 12:14

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

Nguyễn Hoài Đức CTVVIP
Xem chi tiết
thanh tam tran
Xem chi tiết
mik ckua ten
27 tháng 2 2017 lúc 13:16

=(x^2+y^2+2xy​)+(2x+2y)+3

=((x+y)+2(x+y) +1)+2

=(x+y+1)2+2

vậy Amin=2

Trà My
27 tháng 2 2017 lúc 16:41

\(A=x^2+y^2+2xy+2x+2y+3\)

<=>\(A=x^2+2x\left(y+1\right)+y^2+2y+3\)

<=>\(A=x^2+2x\left(y+1\right)+\left(y^2+2y+1\right)+2\)

<=>\(A=x^2+2x\left(y+1\right)+\left(y+1\right)^2+2\)

<=>\(A=\left(x+y+1\right)^2+2\ge2\)

Nguyễn Anh Tú
Xem chi tiết
Du Bách Lý
Xem chi tiết
Phùng Khánh Linh
11 tháng 6 2018 lúc 17:34

\(C=2x^2+y^2-2xy+1\)

\(C=x^2-2xy+y^2+x^2+1\)

\(C=\left(x-y\right)^2+x^2+1\)

Do : \(\left(x-y\right)^2\) ≥ 0 ∀xy

x2 ≥ 0 ∀x

\(\left(x-y\right)^2\) + x2 + 1 ≥ 1

⇒ CMin = 1 ⇔ x = y = 0

buidatkhoi
Xem chi tiết
Gaming Bross
Xem chi tiết
Bùi Thế Hào
19 tháng 7 2017 lúc 16:13

Ta có: A=x3+y3+xy = (x+y)(x2-xy+y2)+xy

=> A=(x+y)(x2+2xy+y2-3xy)+xy

<=> A=(x+y)[(x+y)2-3xy]+xy=1.(12-3xy)+xy

=> A=1-2xy

Lại có:\(x+y\ge2\sqrt{xy}\)

=> \(\left(x+y\right)^2\ge4xy\)=> \(xy\le\frac{1}{4}\)

=> A=1-2xy\(\ge1-\frac{2.1}{4}\)

=> \(A\ge\frac{1}{2}\)

=> GTNN của A là 1/2

QuocDat
19 tháng 7 2017 lúc 16:28

\(A=x^3+y^3+y^3+xy=\left(x+y\right)\left(x^2-xy+y^2\right)+xy=x^2-xy+y^2+xy=x^2+y^2\)

Áp dụng bất đẳng thức Bunhiacopxki ta có : 

\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x.1+y.1\right)^2\)

\(\Leftrightarrow2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)

\(\Rightarrow A=x^2+y^2\ge\frac{\left(x+y\right)^2}{2}=\frac{1}{2}\)

Dấu ''='' xảy ra <=> \(x=y=\frac{1}{2}\)

Vậy AMin = \(\frac{1}{2}\) tại \(x=y=\frac{1}{2}\)

buidatkhoi
Xem chi tiết
Trịnh Hoàng Đông Giang
Xem chi tiết