so sánh \(\frac{a}{b}\) (b>0)và \(\frac{a+n}{b+n}\)
( n thuộc N*)
Cho a thuộc Z, b thuộc Z , b > 0 , n thuộc N*. Hãy so sánh hai số hữu tỉ \(\frac{a}{b}và\frac{a+n}{b+n}\)
(+) Th1 : a = b
=> \(\frac{a}{b}=1\) và \(\frac{a+n}{b+n}=1\)
=> \(\frac{a}{b}=\frac{a+n}{b+n}\)
(+) th2 : a < b
\(\frac{a}{b}=\frac{a\left(b+n\right)}{b\left(b+n\right)}=\frac{ab+an}{b\left(b+n\right)}\)
\(\frac{a+n}{b+n}=\frac{b\left(a+n\right)}{b\left(b+n\right)}=\frac{ab+an}{b\left(b+n\right)}\)
Vì a < b và n thuộc N* => an < bn => ab + an < ab + bn => \(\frac{ab+an}{b\left(b+n\right)}
Ta có: a/b<a+n/b+n <=> a(b+n)<b(a+n)
<=> a.b+a.n<b.a+b.n
<=> a.n<b.n
<=> a<b =>a/b<a+n/b+n <=> a<b
Tương tự: a/b>a+n/b+n <=> a>b
so sánh \(\frac{a}{b}\)(b>0) và \(\frac{a+n}{b+n}\)(n thuộc N*)
Câu hỏi của Hà Huệ - Toán lớp 7 - Học toán với OnlineMath
Bài toán không đủ dữ kiện, vì a>b sẽ có kết quả khác với a<b
Cho a,b,n thuộc Z và b >0 ,n>0 .Hãy so sánh 2 số hữu tỉ \(\frac{a}{b};\frac{a+n}{b+n}\)
Áp dụng kết quả trên hãy so sánh 2/7 và 4/9,-17/25 và -14/28, -331/19 và-21/29
để so sánh, ta xét hiệu a/b và a+n/b+n có: \(\frac{a}{b}-\frac{a+n}{b+n}=\frac{ab+an-ab-bn}{b\left(b+n\right)}=\frac{n\left(a-b\right)}{b\left(b+n\right)}\)
ta có mẫu gồm các số >0 => mẫu dương. n>0. nếu a>b => a-b>0 <=> \(\frac{n\left(a-b\right)}{b\left(b+n\right)}>0\Rightarrow\frac{a}{b}>\frac{a+n}{b+n}\). nếu a<b <=> a-b<0 => \(\frac{n\left(a-b\right)}{b\left(b+n\right)}
nếu a/b<1 => a/b< a+n/ b+n
nếu a/b>1=> a/b> a+n/ b+n
còn các câu áp dụng thì tự làm nhé
Chờ a,b thuộc Z và b>0.so sánh:
\(\frac{a}{b}\)và \(\frac{a+n}{b+n}\)và n thuộc N*
giải theo cách lớp 6
làm từng bước cho dễ hiểu hơn nhé
So sánh \(\frac{a}{b}\left(b>0\right)\) và \(\frac{a+n}{b+n}\) (n thuộc N*)
Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath
\(\frac{a}{b}\)= \(\frac{a\left(a+n\right)}{b\left(b+n\right)}\)= \(\frac{ab+an}{b^2+bn}\)
\(\frac{a+n}{b+n}\)= \(\frac{\left(a+n\right)b}{\left(b+n\right)b}\)= \(\frac{ab+nb}{b^2+bn}\)
Nếu a < b thì ab + an < ab + nb => \(\frac{a}{b}\)< \(\frac{a+n}{b+n}\)
Nếu a > b thì ab + an > ab + nb => \(\frac{a}{b}\)> \(\frac{a+n}{b+n}\)
Nếu a = b thì ab + an = ab + nb => \(\frac{a}{b}\)= \(\frac{a+n}{b+n}\)
Cho a, b thuộc N* . Hãy so sánh \(\frac{a+n}{b+n}và\frac{a}{b}\)
Từ \(\frac{a}{b}\)> 1, Suy ra: an < bn
Suy ra: an + ab < bn + ab
Suy ra: a (n + b) < b (n + a)
Suy ra: \(\frac{a}{b}\)> \(\frac{a+n}{b+n}\)
Nhầm, Suy ra: an > bn
Suy ra: an + ab > bn + ab
Suy ra: a (n + b) > b (n + a)
nếu a=b=>\(\frac{a+n}{b+n}\)=\(\frac{a}{b}\)
nếu a>b=>\(\frac{a+n}{b+n}\)>\(\frac{a}{b}\)
nếu a<b=>\(\frac{a+n}{b+n}\)<\(\frac{a}{b}\)
a,cho a,b là hai số nguyên ,b lớn hơn 0 ,n thuộc n sao.Hãy so sánh\(\frac{a}{b}\) và\(\frac{a+n}{b+n}\)
b,áp dụng hãy so sánh \(\frac{2}{7}\)và\(\frac{3}{8}\),\(\frac{-16}{26}và\frac{-17}{25}\),\(\frac{31}{19}và\frac{32}{20}\)
a) Cho a,b,n thuộc N* . So sánh \(\frac{a+n}{b+n}\)và \(\frac{a}{b}\)
b) Cho các số hữu tỉ : x=\(\frac{a}{b}\) ; y=\(\frac{c}{d}\); z= \(\frac{m}{n}\)(b,d,n >0) . Biết ad - bc = 1 và cn - dm = 1.
* So sánh các số x; y; z
* So sánh y với t, biết t=\(\frac{a+m}{b+n}\) ( với b + n khác 0)
Cho a, b ,n thuộc N* Hãy so sánh \(\frac{a+n}{b+n}và\frac{a}{b}\)
nếu a/b <1 suy ra a/b<a+n/b+n
nếu a/b>1 suy ra a/b>a+n/b+n