Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
phèn văn phò
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
26 tháng 6 2020 lúc 5:25

\(\frac{x}{3}=\frac{y}{5}=\frac{z}{8}\)và 3x + y - 2z = 14

=> \(\frac{3x}{9}=\frac{y}{5}=\frac{2z}{16}\)và 3x + y - 2z = 14

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{3x}{9}=\frac{y}{5}=\frac{2z}{16}=\frac{3x+y-2z}{9+5-16}=\frac{14}{-2}=-7\)

\(\frac{3x}{9}=-7\Rightarrow3x=-63\Leftrightarrow x=-21\)

\(\frac{y}{5}=-7\Rightarrow y=-35\)

\(\frac{2z}{16}=-7\Rightarrow2z=-112\Leftrightarrow z=-56\)

Khách vãng lai đã xóa
๖²⁴ʱTú❄⁀ᶦᵈᵒᶫ
26 tháng 6 2020 lúc 7:40

Sửa : 7/5 => y/5

Áp dụng t/c dãy tỉ số bằng nhau ta có 

\(\frac{x}{3}=\frac{y}{5}=\frac{z}{8}=\frac{3x+y-2z}{3.3+5-2.8}=\frac{14}{-2}=-7\)

\(\frac{x}{3}=-7\Leftrightarrow x=-21\)

\(\frac{y}{5}=-7\Leftrightarrow y=-35\)

\(\frac{z}{8}=-7\Leftrightarrow z=-56\)

Khách vãng lai đã xóa
Nguyễn Minh Đăng
26 tháng 6 2020 lúc 10:55

Bài làm: \(\frac{x}{3}=\frac{y}{5}=\frac{z}{8}=\frac{3x+y-2z}{3.3+5-2.8}=\frac{14}{-2}=-7\)

\(\Rightarrow\hept{\begin{cases}x=-21\\y=-35\\z=-56\end{cases}}\)

Khách vãng lai đã xóa
Nguyễn Phương Linh
Xem chi tiết
le thi thuy trang
1 tháng 1 2016 lúc 20:06

dựa vào dạng toán dãy tỉ số bằng nhau

Tan Tan Tan
1 tháng 1 2016 lúc 21:43

pạn trình bày cho mk tham khảo vs

Nguyễn Phương Linh
17 tháng 1 2016 lúc 13:30

Các bạn trình bày ra đi

Cấn Thu Ngân
Xem chi tiết
Nguyễn Thành Hiệp
Xem chi tiết
Lê Thu Hiền
Xem chi tiết
Phan Thanh Binh
29 tháng 10 2017 lúc 21:14

a) x/5=y/2

= x+y/5+2=21/7=3

=> x/5=3=>x=15

    y/2=3=>x=6

Phạm Hàn Minh Chương
29 tháng 10 2017 lúc 21:17

1) a) => \(\frac{x}{2}=\frac{y}{5}vàx+y=21\)

Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :

\(\frac{x}{2}=\frac{y}{5}=\frac{x+y}{2+5}=\frac{21}{7}=3\)

\(\frac{x}{2}=3\Rightarrow x=2\cdot3=6\)

\(\frac{y}{5}=3\Rightarrow y=3\cdot5=15\)

c) =.> \(\frac{x}{7}=\frac{y}{5}vày-x=12\)

Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :

\(\frac{x}{7}=\frac{y}{5}=\frac{y-x}{5-7}=\frac{12}{-2}=-6\)

*\(\frac{x}{7}=-6\Rightarrow x=-6\cdot7=-42\)

*\(\frac{y}{5}=-6\Rightarrow y=-6\cdot5=-30\)

Nguyễn Thùy Linh
Xem chi tiết
Viên Tiến Duy
22 tháng 9 lúc 23:01

\(\dfrac{x}{8}=\dfrac{y}{-7}=\dfrac{z}{12}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có

\(\dfrac{x}{8}=\dfrac{y}{-7}=\dfrac{z}{12}=\dfrac{-3x+10y-2z}{-24-70-24}=\dfrac{236}{-118}=-2\)

Do đó

\(x=\left(-2\right)\times8=-16\)

\(y=\left(-2\right)\times\left(-7\right)=14\)

\(z=\left(-2\right)\times12=-24\)

Vậy x = -16 ; y = 14 ; z = -24

Hỏi toán
23 tháng 9 lúc 11:05

TTôi nghe nói Trong "Principia Mathematica" của Bertrand Russell và Alfred North Whitehead, việc chứng minh 1 + 1 = 2 mất khoảng 362 trang. Đây là một phần của nỗ lực xây dựng toán học dựa trên logic hình thức. Chứng minh này phản ánh sự phức tạp của các định nghĩa và tiên đề trong lý thuyết tập hợp và số học. Nếu bạn cần thêm thông tin về nội dung cụ thể, hãy cho tôi biết! Chứng minh 1 + 1 = 2 trong "Principia Mathematica" được xem là khó khăn vì nó yêu cầu hiểu biết sâu sắc về logic hình thức và các định nghĩa phức tạp. Mặc dù kết quả cuối cùng có vẻ đơn giản, quá trình chứng minh đòi hỏi nhiều bước logic và khái niệm toán học. Nếu bạn không quen với lý thuyết này, nó có thể khá trừu tượng và khó tiếp cận.

Duy Trần Phạm Quốc
Xem chi tiết
Nguyễn Hưng Phát
Xem chi tiết
0o0_ Nguyễn Xuân Sáng _0...
20 tháng 7 2016 lúc 12:47

Botay.com.vn

Nguyễn Hoàng Mỹ Dân
Xem chi tiết
Dương Văn Minh
5 tháng 3 2017 lúc 21:01

1.Tính giá trị của biểu thức: A=\(\frac{5x^2+3y^2}{10x^2-3y^2}\left(1\right)biết\frac{x}{3}=\frac{y}{5}suyra:5x=3y;suyra:x=\frac{3y}{5};thayvào\left(1\right)taco:\frac{5\left(\frac{3y}{5}\right)^2+3y^2}{10\left(\frac{3y}{5}\right)^2-3y^2}=\frac{\frac{9y^2}{5}+3y^2}{\frac{18y^2}{5}-3y^2}=\frac{24y^2}{5}\cdot\frac{5}{3y^2}=8\)

Dương Văn Minh
5 tháng 3 2017 lúc 21:32

2.\(\frac{x}{y}=\frac{7}{10}suyra;\frac{x}{7}=\frac{y}{10}\left(1\right)và\frac{y}{z}=\frac{5}{8}suyra;\frac{y}{5}=\frac{z}{8}suyra;\frac{y}{5}\cdot\frac{1}{2}=\frac{z}{8}\cdot\frac{1}{2}suyra;\frac{y}{10}=\frac{z}{16}\left(2\right)Tù\left(1\right)và\left(2\right)suyra\frac{x}{7}=\frac{y}{10}=\frac{z}{16}và2x+5y-2z=9;suyra:\frac{2x}{14}=\frac{5y}{50}=\frac{2z}{32}ápdụngtínhchấtcủadãytỉsốbằngnhautacó\frac{2x}{14}=\frac{5y}{50}=\frac{2z}{32}=\frac{2x+5y-2z}{14+50-32}=\frac{9}{32}suyra;x=\frac{63}{32};y=\frac{45}{16};z=\frac{9}{2}\)