Cho tỉ lệ thức \(\frac{ab}{cd}\)=\(\frac{b}{c}\)với c khác 0. CMR ac=b2
Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\)với a,b,c,d khác 0,a khác b , c khác d . CMR \(\frac{a}{a-b}=\frac{c}{c-d}\)
Cho tỉ lệ thức \(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}\)trong đó b khác 0 . CMR c = 0
MAI MÌNH NỘP RỒI GIÚP MÌNH VỚI
Câu 1 :Cho tỉ lệ thức a/b=c/d với b,c,d khác 0và c khác -d
Cmr: a+b/b=c+d/d
Câu 2: cho tỉ lệ thức a/b=c/d với b,c,d khác 0 và a khác -b,c khác -d.
Cmr: a/a+b=c/c+d
Câu 3: cho a+b/a-b=c+d/c-d(a,b,c,d khác 0 và a khác b, c khác âm dương c)
Cmr a/b=c/d
Câu 4: cho tỉ lệ thức a/b=c/d với a,b,c,d khác 0
Cmr ac/bd=a^2+c^2 /b^2+d^2
Câu 5: cho tỉ lệ thức a/b=c/d với a,b,c,d khác 0 và c khác d
Cmr: (a-b)^2/(c-d)^2=ab/cd
Câu 6: cho tỉ lệ thức a/b=c/d với a,b,c,d khác 0 và khác-d
Cmr: (a+b)^2014/(c+d)^2014=a^2014+b^2014/c^1014+d^2014
Câu 7:cho a/c=c/d với a,b,c khác 0
Cmr a/b=a^2+c^2/b^2+d^2
Câu 8: cho a/c=c/d với a,b,c khác 0
Cmr b-a/a=b^2-a^2/a^2+c^2
Câu 9:cho tỉ lệ thức a/b=c/d với a,b,c,d khác 0 và a khác âm dương 5/3b; khác âm dương 5/3d khác 0
Cmr: các tỉ lệ thức sau: 3a+5b/3a-5b=3c+5d/3c-5d
Câu 10: cho tỉ lệ thức a/b=c/d với a,b,c,d khác 0
Cmr: 7a^2+5ac/7b^2-5ac=7a^2+5bd/7b^2-5bd
Câu 1
Ta có : \(\frac{a}{b}=\frac{c}{d}=>\left(\frac{a}{b}+1\right)=\left(\frac{c}{d}+1\right)\left(=\right)\frac{a+b}{b}=\frac{c+d}{d}\)
=> ĐPCM
Câu 2
Ta có \(\frac{a}{b}=\frac{c}{d}=>\frac{b}{a}=\frac{d}{c}=>\left(\frac{b}{a}+1\right)=\left(\frac{d}{c}+1\right)\left(=\right)\frac{b+a}{a}=\frac{d+c}{c}=>\frac{a}{b+a}=\frac{c}{d+c}\)
=> ĐPCM
Câu 3
Câu 3
Ta có \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)(=) (a+b).(c-d)=(a-b).(c+d)(=)ac-ad+bc-bd=ac+ad-bc-bd(=)-ad+bc=ad-bc(=) bc+bc=ad+ad(=)2bc=2ad(=)bc=ad=> \(\frac{a}{b}=\frac{c}{d}\)
=> ĐPCM
Câu 4
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
\(=>\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
Ta có \(\frac{ac}{bd}=\frac{bk.dk}{bd}=k^2\left(1\right)\)
Lại có \(\frac{a^2+c^2}{b^2+d^2}=\frac{b^2k^2+c^2k^2}{b^2+d^2}=\frac{k^2.\left(b^2+d^2\right)}{b^2+d^2}=k^2\left(2\right)\)
Từ (1) và (2) => ĐPCM
Mày là thằng anh tuấn lớp 7c trường THCS yên lập đúng ko
Cho tỉ lệ thức \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\) với a,b,c,d khác 0 và c khác-d
Chứng minh rằng : \(\frac{a}{b}=\frac{c}{d}\)hoặc \(\frac{a}{b}=\frac{d}{c}\)
Ta có : \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)
\(\Leftrightarrow\left(a^2+b^2\right)cd=ab\left(c^2+d^2\right)\)
\(\Leftrightarrow a^2cd+b^2cd=abc^2+abd^2\)
\(\Leftrightarrow\left(a^2cd-abd^2\right)+\left(b^2cd-abc^2\right)=0\)
\(\Leftrightarrow ad\left(ac-bd\right)-bc\left(ac-bd\right)=0\)
\(\Leftrightarrow\left(ac-bd\right)\left(ad-bc\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}ac=bd\\ad=bc\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\frac{a}{b}=\frac{c}{d}\\\frac{a}{b}=\frac{d}{c}\end{cases}}\) (đpcm)
Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}.CMR:\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\)
Từ giả thiết: \(\frac{a}{b}=\frac{c}{d}\)=>ad=bc (1)
Ta có: ab(c2-d2)=abc2-abd2=acbc-adbd (2)
cd(a2-b2)=a2cd-b2cd=acad-bcbd (3)
Từ (1) ,(2),(3)=> ab(c2-d2)=cd(a2-b2)=>\(\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\) (đpcm)
cho tỉ lệ thức : \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}cmr\frac{a}{b}=\frac{c}{d}\)
(a² + b²) / (c² + d²) = ab/cd
<=> (a² + b²)cd = ab(c² + d²)
<=> a²cd + b²cd = abc² + abd²
<=> a²cd - abc² - abd² + b²cd = 0
<=> ac(ad - bc) - bd(ad - bc) = 0
<=> (ac - bd)(ad - bc) = 0
<=> ac - bd = 0 hoặc ad - bc = 0
<=> ac = bd hoặc ad = bc
<=> a/b = d/c hoặc a/b = c/d (đpcm)
Ta có : \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}=\frac{2ab}{2cd}=\frac{a^2+2ab+b^2}{c^2+2cd+d^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{ab}{cd}\)
\(\Rightarrow\frac{\left(a+b\right)\left(a+b\right)}{\left(c+d\right)\left(c+d\right)}=\frac{ab}{cd}\)
\(\Rightarrow\frac{c\left(a+b\right)}{a\left(c+d\right)}=\frac{b\left(c+d\right)}{d\left(a+b\right)}=\frac{ca+cb}{ac+ad}=\frac{bc+db}{da+db}=\frac{ca-bd}{ca-bd}=1\)
\(\Rightarrow ca+cb=ac+ad\Rightarrow cb=ad\Rightarrow\frac{a}{b}=\frac{c}{d}\)
cho tỉ lệ thức \(\overline{\frac{ab}{a+b}}\)=\(\frac{\overline{bc}}{b+c}\)với a, b, c, là các số tự nhiên khác 0
CMR\(\frac{a}{b}\)=\(\frac{b}{c}\)
\(\frac{\overline{ab}}{a+b}=\frac{\overline{bc}}{b+c}\) hay \(\frac{10a+b}{a+b}=\frac{10b+c}{b+c}\)
\(\left(10a+b\right)\left(b+c\right)=\left(a+b\right)\left(10b+c\right)\)
\(10ab+b^2+10ac+bc=10ab+10b^2+ac+bc\)
\(9ac=9b^2\)
\(ac=b^2\)
\(\frac{a}{b}=\frac{b}{c}\)
\(\frac{10a+b}{a+b}=\frac{10b+c}{b+c}\)=\(1+\frac{9a}{a+b}=1+\frac{9b}{b+c}\)
\(\frac{9a}{a+b}=\frac{9b}{b+c}=>\frac{9a}{9b}=\frac{a+b}{b+c}\)
\(\frac{a}{b}=\frac{a+b}{b+c}=\frac{a+b-a}{b+c-b}=\frac{b}{c}\)
=>\(\frac{a}{b}=\frac{b}{c}\)
nếu đúng thì k nka
Cho tỉ lệ thức: \(\frac{ab}{bc}=\frac{b}{c}\)với c khác 0. Chứng minh rằng \(ac=b^2\)
Ta co: ab/bc=b/c => a/c=b/c => a=b
Xet dang thuc ac=b2 ta co: ac=b2
thay a=b vao dang thuc tren ta duoc: b.c=b2 hay b.c=b.b => c=b
Ma b=a nen suy ra c=b=a
Vi a=b ; c=b nen suy ra ac=b2 (dpcm)
Cho tỉ lệ thức \(\frac{ab}{a+b}\)=\(\frac{bc}{b+c}\) chứng minh tỉ lệ thức \(\frac{a}{b}\)=\(\frac{b}{c}\)với giả thiết c khác 0
Đề \(\Rightarrow\frac{a+b}{ab}=\frac{b+c}{bc}\)\(\Leftrightarrow\frac{a}{ab}+\frac{b}{ab}=\frac{b}{bc}+\frac{c}{bc}\)\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}=\frac{1}{b}+\frac{1}{c}\)
\(\Leftrightarrow\frac{1}{a}=\frac{1}{c}\Rightarrow a=c\Leftrightarrow ab=bc\)
\(\Rightarrow\frac{a}{b}=\frac{c}{b}\)
Đề sai hả bạn ?
Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\).CMR:\(\frac{a^2+b^2}{ab}=\frac{c^2+d^2}{cd}\)(giá trị tỉ lệ thức cần chứng minh có nghĩa)