giả sử X=a/m ,Y=b/m (a,b,m "thuộc"Z ,m>0) va x<y. Hãy chứng tỏ rằng nếu chọn Z=a+b/2m thì ta có x<z<y
0) va x"> 0) va x" />
giả sử X=a/m ,Y=b/m (a,b,m "thuộc"Z ,m>0) va x
Giả sử, x=a/m, y=b/m (với a,b, m thuộc Z, m>0) Chọn Z=a+b/2m.Chứng tỏ rằng nếu x<Z<y.
giả sử X=a/m ,Y=b/m (a,b,m "thuộc"Z ,m>0) va x<y. Hãy chứng tỏ rằng nếu chọn Z=a+b/2m thì ta có x<z<y mik chưa hiểu lắm mong các bạn chỉ mik ko cần làm ds mà nêu cách nghĩ suy luận
Ta có: x = a/m ; y = b/m ; z = a+b/2m
Vì x < y => a < b
x = 2a/2m ; y = 2b/2m ; z = a+b/2m
Vì a < b => a+a < b+a
2a < b+a
Vậy x < z (1)
b+a < b+b
b+a < 2b. Do đó z < y (2)
Từ (1) và (2) => x < z < y
Giả sử x = a/m, y = b/m (a,b,m thuoc Z, m > 0) va x < y. Hãy chứng tỏ rằng nếu chọn z = a+b/2m thì ta có x < z < y
vì \(x=\frac{a}{m};y=\frac{b}{m}\) và x<y nên a/m<b/m hay a<b
so sánh z và x có
x=\(\frac{a}{m}=\frac{2a}{2m}=\frac{a+a}{2m}\)
vì z=\(\frac{a+b}{2m}\)mà \(\frac{a+a}{2m}
Giả sử x= a/m, y= b/m(a,b,m thuộc Z,m>0) và x<y.CMR nếu chọn z=a+b/2m thì x<z<y
Giả sử x = a/m ; y = b/m (a,b,m thuộc z, m>0) và x <y . hãy chứng tỏ rằng x<z<y với z= a+b/2m
Giả sử x=a/m; y=b/m (a;b;m thuộc Z;m khác 0 ) và x<y. CMR nếu chọn z=a+b/2m thì ta có x<z<y
Giả sử x=a/m; y=b/m (a;b;m thuộc Z;m khác 0 ) và x<y. CMR nếu chọn z=a+b/2m thì ta có x<z<y
x=a/m;y=b/m;x<y nên a<b
nên a+a<a+b
nên 2a/2m<a+b
nên x<z
tương tự có z<y
do đó x<z<y
Giả sử x = a/m , y = b/m ( a,b,m thuộc Z, m > 0 ) và x < y. Hãy chứng tỏ rằng nếu chọn z = a+b/m thì ta có x < z < y
theo đề bài ta có :
\(x=\frac{a}{m}\); \(y=\frac{b}{m}\)( a,b,m \(\in\)Z , m > 0 )
vì x < y \(\Leftrightarrow\)\(\frac{a}{m}< \frac{b}{m}\)
\(\Rightarrow a< b\Rightarrow a+a< b+a\Rightarrow2a< a+b\)
\(\Rightarrow\frac{2a}{2m}< \frac{a+b}{2m}\Rightarrow\frac{a}{m}< \frac{a+b}{2m}\Rightarrow x< z\left(1\right)\)
Vì a < b \(\Rightarrow\)a + b < b + c
\(\Rightarrow a+b< 2b\)
\(\Rightarrow\frac{a+b}{2m}< \frac{2b}{2m}\Rightarrow\frac{a+b}{2m}< \frac{b}{m}\Rightarrow z< y\left(2\right)\)
Từ ( 1 ) và ( 2 ) \(\Rightarrow\)\(x< z< y\)
Theo bài ra ta có \(x< y\Rightarrow\frac{a}{m}< \frac{b}{m}\Rightarrow\frac{a}{2m}< \frac{b}{2m}\)
\(\Rightarrow\frac{a}{2m}+\frac{a}{2m}< \frac{a}{2m}+\frac{b}{2m}\Rightarrow\frac{2a}{2m}< \frac{a+b}{2m}\Rightarrow\frac{a}{m}< \frac{a+b}{2m}\Rightarrow x< z\) (1)
Từ x < y, ta lại có \(\frac{a}{2m}< \frac{b}{2m}\Rightarrow\frac{a}{2m}+\frac{b}{2m}< \frac{b}{2m}+\frac{b}{2m}\Rightarrow\frac{a+b}{2m}< \frac{2b}{2m}\Rightarrow\frac{a+b}{2m}< \frac{b}{m}\Rightarrow z< y\) (2)
Từ (1) và (2) suy ra đpcm