Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng Thị Hải Yến
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
10 tháng 4 2021 lúc 20:04

1. Cho các số tự nhiên a,b,c thỏa mãn a2+b2+c2=ab+bc+ca và a+b+c=3. Tính M=a2016+2015b2015+2020c

a2+b2+c2=ab+bc+ca

<=> 2( a2+b2+c2 ) =2( ab+bc+ca )

<=> 2a2 + 2b2 + 2c2 = 2ab + 2bc + 2ca

<=> 2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ca = 0

<=> ( a2 - 2ab + b2 ) + ( b2 - 2bc + c2 ) + ( c2 - 2ca + a2 ) = 0

<=> ( a - b )2 + ( b - c )2 + ( c - a )2 = 0

Dễ chứng minh VT ≥ 0 ∀ a,b,c. Dấu "=" xảy ra <=> a=b=c

Lại có a+b+c=3 => a=b=c=1

từ đây bạn thế vào tính M nhé :))

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
10 tháng 4 2021 lúc 20:07

2.Cho x>y>0. Chứng minh \(\frac{x-y}{x+y}< \frac{x^2-y^2}{x^2+y^2}\)

Ta có : \(\frac{x^2-y^2}{x^2+y^2}>\frac{x-y}{x+y}\)

<=> \(\frac{x^2-y^2}{x^2+y^2}-\frac{x-y}{x+y}>0\)

<=> \(\frac{\left(x^2-y^2\right)\left(x+y\right)}{\left(x^2+y^2\right)\left(x+y\right)}-\frac{\left(x^2+y^2\right)\left(x-y\right)}{\left(x^2+y^2\right)\left(x+y\right)}>0\)

<=> \(\frac{x^3+x^2y-xy^2-y^3}{\left(x^2+y^2\right)\left(x+y\right)}-\frac{x^3-x^2y+xy^2-y^3}{\left(x^2+y^2\right)\left(x+y\right)}>0\)

<=> \(\frac{x^3+x^2y-xy^2-y^3-x^3+x^2y-xy^2+y^3}{\left(x^2+y^2\right)\left(x+y\right)}>0\)

<=> \(\frac{2x^2y-2xy^2}{\left(x^2+y^2\right)\left(x+y\right)}>0\)

<=> \(\frac{2xy\left(x-y\right)}{\left(x^2+y^2\right)\left(x+y\right)}>0\)( đúng vì x > y > 0 )

=> đpcm 

Khách vãng lai đã xóa
Nhok Lok Chok
Xem chi tiết
Tienanh nguyễn
Xem chi tiết
Nguyễn Thị Việt Trà
Xem chi tiết
Lê Anh Quân
Xem chi tiết
Toán full
Xem chi tiết
thai ba hiep
Xem chi tiết
Sarah
26 tháng 7 2016 lúc 19:40

\(A< \frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+....+\frac{1}{99.100}\)

\(A< \frac{1}{4}-\frac{1}{100}\)

\(A< \frac{6}{25}< \frac{1}{4}\)

thai ba hiep
27 tháng 7 2016 lúc 5:24

các bạn giải mau lên

thai ba hiep
27 tháng 7 2016 lúc 5:26

ai trả lời không mình sắp đi học rồi

T_T
Xem chi tiết
Touka 0_0
Xem chi tiết
Mai Ngọc
29 tháng 12 2015 lúc 21:04

A=1+3+3^2+3^3+...+3^2016

=>A=3(1+3+3^2+3^3+...+3^2016)

=>3A=3+3^2+3^3+...+3^2017

=>3A-A=(3+3^2+3^3+...+3^2017)-(1+3+3^2+3^3+...+3^2016)

=>2A=3^2017-1

=>A=(3^2017-1):2

=>B-A=(3^2017-1):2-3^2015:2=(3^2017-3^2015-1)/2