cho a= 1+3+3^2+3+3^3................................+3^2015
b=3^2016 :2
tinh b-a
1. Cho các số tự nhiên a,b,c thỏa mãn a^2+b^2+c^2=ab+bc+ca và a+b+c=3. Tính M=a^2016+2015b^2015+2020c
2.Cho x>y>0. Chứng minh x-y/x+y<x^2-y^2/x^2+y^2
1. Cho các số tự nhiên a,b,c thỏa mãn a2+b2+c2=ab+bc+ca và a+b+c=3. Tính M=a2016+2015b2015+2020c
a2+b2+c2=ab+bc+ca
<=> 2( a2+b2+c2 ) =2( ab+bc+ca )
<=> 2a2 + 2b2 + 2c2 = 2ab + 2bc + 2ca
<=> 2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ca = 0
<=> ( a2 - 2ab + b2 ) + ( b2 - 2bc + c2 ) + ( c2 - 2ca + a2 ) = 0
<=> ( a - b )2 + ( b - c )2 + ( c - a )2 = 0
Dễ chứng minh VT ≥ 0 ∀ a,b,c. Dấu "=" xảy ra <=> a=b=c
Lại có a+b+c=3 => a=b=c=1
từ đây bạn thế vào tính M nhé :))
2.Cho x>y>0. Chứng minh \(\frac{x-y}{x+y}< \frac{x^2-y^2}{x^2+y^2}\)
Ta có : \(\frac{x^2-y^2}{x^2+y^2}>\frac{x-y}{x+y}\)
<=> \(\frac{x^2-y^2}{x^2+y^2}-\frac{x-y}{x+y}>0\)
<=> \(\frac{\left(x^2-y^2\right)\left(x+y\right)}{\left(x^2+y^2\right)\left(x+y\right)}-\frac{\left(x^2+y^2\right)\left(x-y\right)}{\left(x^2+y^2\right)\left(x+y\right)}>0\)
<=> \(\frac{x^3+x^2y-xy^2-y^3}{\left(x^2+y^2\right)\left(x+y\right)}-\frac{x^3-x^2y+xy^2-y^3}{\left(x^2+y^2\right)\left(x+y\right)}>0\)
<=> \(\frac{x^3+x^2y-xy^2-y^3-x^3+x^2y-xy^2+y^3}{\left(x^2+y^2\right)\left(x+y\right)}>0\)
<=> \(\frac{2x^2y-2xy^2}{\left(x^2+y^2\right)\left(x+y\right)}>0\)
<=> \(\frac{2xy\left(x-y\right)}{\left(x^2+y^2\right)\left(x+y\right)}>0\)( đúng vì x > y > 0 )
=> đpcm
tim a b c biet a/2014=b/3=c/3 va 2015b-2016c-a=-1
Bài 1: Cho a,b,c thỏa mãn (a+b-c)/c=(b+c-a)/a=(c+a-b)/b
tính P=(1+b/a)*(1+c/b)*(1+a/c)
Bài 2: Cho a+b+c=0
tính B=((a^2+b^2-c^2)*(b^2+c^2-a^2)*(c^2+a^2-b^2))/(10*a^2*b^2*c^2)
Bài 3: cho a^3*b^3+b^3*c^3+c^3*a^3=3*a^3*b^3*c^3
tính M(1+a/b)*(1+b/c)*(1+c/a)
Bài 4: cho 3 số a,b,c TM a*b*c=2016
tính P=2016*a/(a*b+2016*a+2016) + b/(b*c+b+2016) + c/(a*c+c+1)
Bài 5: cho a+b+c=0
tính Q=1/(a^2+b^2-c^2) + 1/(b^2+c^2-a^2) + 1/(a^2+c^2-b^2)
Cho \(\frac{a}{b}=\frac{c}{d}\). CMR: a) \(\left(\frac{a+b}{c+d}\right)^3=\frac{a^3-b^3}{c^3-d^3}\)
b) \(\frac{ac}{bd}=\frac{2015a^2+2016c^2}{2015b^2+2016d^2}\)
Câu 1
a) Chứng tỏ rằng 1/3 - 1/3^2 + 1/3^3 - 1/3^4 + 1/3^5 - 1/3^6 < 1/4
b) Cho A= 2015^2016 + 2016^2015 x 2015 và B= 1 + 2^2 + 3^2 + ......+2016^2. Tính AB có chia hết cho 5 không? Vì sao?
cho a^3+b^3=c(3ab-c^2) và a+b+c=3 tính giá trị của: K=675(a^2016+b^2016+c^2016)+1
1.Tính:
a, B=1/2016+13/2016+15/2016+37/2016+..........+97/2016
b, C=3/2+3/4+3/8+3/16+3/32+3/64+3/128+3/256
2. Cho A=1/5x5+1/6x6+1/7x7+........+1/100x100.Chứng tỏ rằng 1/6<A<1/4
khẩn cấp nhé các bạn, mình cần giải ngay
dấu / là dấu trong phân số đấy các bạn
\(A< \frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+....+\frac{1}{99.100}\)
\(A< \frac{1}{4}-\frac{1}{100}\)
\(A< \frac{6}{25}< \frac{1}{4}\)
Cho
A=1+3+3^2+3^3+..+3^2016
B= 3^2015:2
Tính B-A
Cho
A=1+3+3^2+3^3+..+3^2016
B= 3^2015:2
Tính B-A
A=1+3+3^2+3^3+...+3^2016
=>A=3(1+3+3^2+3^3+...+3^2016)
=>3A=3+3^2+3^3+...+3^2017
=>3A-A=(3+3^2+3^3+...+3^2017)-(1+3+3^2+3^3+...+3^2016)
=>2A=3^2017-1
=>A=(3^2017-1):2
=>B-A=(3^2017-1):2-3^2015:2=(3^2017-3^2015-1)/2