Cho S = 2^1+2^2+2^3+...+2^100. Chứng minh S chia hết cho 15
Cho S= 21 + 22 + 23 + . . . . + 2100
Chứng minh rằng S chia hết cho 3
Chứng minh rằng S chia hết cho 15
Cho S=2+2^2+2^3+...+2^100
chứng minh S chia hết cho 15
S=2+22+23+...+2100
=(2+22+23+24)+...+(297+298+299+2100)
=2.(1+2+22+23)+...+297.(1+2+22+23)
=2.15+...+297.15
=15.(2+...+297) chia hết cho 15 đpcm
1.
Cho S = 2^1 + 2^2 + 2^3 + ... + 2^100
Chứng minh rằng S chia hết cho 15
Cho S=21 + 22+ 23+...+ 2100,Chứng minh rằng S chia hết cho 15
S = 21+22+23+...+2100
S = (2+22+23+24) + (25+26+27+28) +.....+ (297+298+299+2100)
S = 2(1+2+22+23) + 25(1+2+22+23) +.....+ 297(1+2+22+23)
S = 2.15 + 25.15 +.....+ 297.15
S = 15.(2+25+...+297) chia hết cho 15
=> Đpcm
A) Cho P = 3 + 32 + 33 + 34+ ... + 3100.Chứng minh P chia hết cho 4
B) Cho S = 2 + 22 + 23 + 24 + ... + 2100 . Chứng minh :
1) S chia hết cho 3 2) S chia hết cho 15
C) Cho T = 22000 + 22002. Chứng minh T chia hết cho 5120
Nhanh tick
Cho S= 21+22+23+...+2100
Chứng minh rằng:S chia hết cho 3 và chia hết cho 15
S = (21+22)+(23+24)+...+(299+2100)
S = 2.(1+2)+23.(1+2)+...+299.(1+2)
S = 2.3+23.3+...+299.3
S = 3.(2+23+...+299)
=> S chia hết cho 3
S = (21+22+23+24)+(25+26+27+28)+...+(297+298+299+2100)
S = 2.(1+2+4+16)+25.(1+2+4+16)+...+297.(1+2+4+16)
S = 2.15+25.15+...+297.15
S = 15.(2+25+...+297)
=> S chia hết cho 15
Cho S= 21+22+23+...+2100
Chứng minh rằng:S chia hết cho 3 và chia hết cho 15
Cho S=2+2 mũ 2+2 mũ 3+...+2 mũ 100
chứng minh rằng
a) S chia hết 3
b) S chia hết 15
S=2+22+23+...+2100
S=(2+22)+(23+24)+....+(299+2100)
S=6+22(23+24)+....+298(2+22)
S=1.6+22.6+...+298.6
S=6.(1+22+....+296) chia hết cho 3
S=2+22+23+...+2100
S=(2+22+23+24)+....+(297+298+299+2100)
S=30+.....+296(2+22+23+24)
S=1.30+....+296.30
S=30.(1+....+296) chia hết cho 15
a,2 + 2^2 + 2^3 + ... + 2^100
<=> (2+2^2) + (2^3+2^4) + .... + (2^99+2^100)
<=> 2.(1+2) + 2^3.(1+2) +.....+ 2^99.(1+2)
<=>2.3 + 2^3.3 +...+2699.3
<=>3.(2+2^3+....+2^99)
=> S chia hết cho 3
phần b chỉ cần nhóm 4 số vào thôi
Bài 1: Cho S= 3 + 3^2 + 3^3 +...+ 3^100. Chứng minh rằng S chia hết cho 4. Tìm chữ số tận cùng của S.
Bài 2: Chứng minh rằng: ( 1+2+2^2+2^3+...+2^17) chia hết cho 9