tìm các nghiệm nguyên (x,y) của phương trình \(54x^3+1=y^3...\)
ai giúp mk mk cho 3 tick luôn
Tìm các nghiệm nguyên (x,y) của phương trình: 54x3+1=y3
Giúp mk giải bài này vs @@ . Ai giải chi tiết mk sẽ tick cho <3 <3
tìm các nghiệm nguyên (x,y) của phương trình \(54x^3+1=y^3.....\)
Tìm nghiệm nguyên của phương trình: 54x3+1=y3
Giải như sau:
Đặt a=2x3a=2x3 khi ấy 27a+1=y3,a=2x3⇒a(27a+1)=2(xy)3=2t327a+1=y3,a=2x3⇒a(27a+1)=2(xy)3=2t3
Suy ra 2a(54a+2)=(2t)3=k32a(54a+2)=(2t)3=k3 suy ra u(27u+2)=k3⇒9u(3.(9u)+2)=9k3u(27u+2)=k3⇒9u(3.(9u)+2)=9k3
Do đó đặt v=9vv=9v khi ấy v(3v+2)=9k3⇒3v(3v+2)=(3k)3=m3v(3v+2)=9k3⇒3v(3v+2)=(3k)3=m3
Lúc này phương trình là 9v2+6v=m3⇒(3v+1)2=m3+1=(m+1)(m2−m+1)9v2+6v=m3⇒(3v+1)2=m3+1=(m+1)(m2−m+1)
Vì gcd(m+1,m2−m+1)=1,3gcd(m+1,m2−m+1)=1,3 mà 3v+1⋮/33v+1⋮̸3 nên gcd(m+1,m2−m+1)=1gcd(m+1,m2−m+1)=1 do đó m2−m+1=l2m2−m+1=l2 giải phương trình nghiệm nguyên này thu được m=0m=0 do đó v=0v=0
Đưa về quá trình đặt ẩn ban đầu thu được x=0,y=1
mk ko hiểu dòng 2 chỗ 2a(54a+2)
Bạn ấy coppy ở đây thì cậu hiểu làm j:(:
54x3+1=y3 54 x 3 + 1 = y 3 - Diễn đàn Toán học
Giai pt nghiệm nguyên dương : x^3 - y^3 - z^3 = 3 . xyz và x^2 = 2 . ( y+z )
Ai giải đúng mk cho 3 tick luôn nha
mk ms hok lp 6 thoy nên ko biết làm
tk mk nha
chúc các bn hok tốt !
\(x^3-\left(y^3+z^3\right)=3xyz\)
\(\Rightarrow x^3-\left[\left(y+z\right)^3-3yz\left(y+z\right)\right]=3xyz\)
\(\Rightarrow x^3-\left(y+z\right)^3+3yz\left(y+z\right)=3xyz\)
\(\Rightarrow x^3-\left(y+z\right)^3=3yz\left[x-\left(y+z\right)\right]\)
\(\Rightarrow\left[x-\left(y+z\right)\right]\left[x^2+x\left(y+z\right)+\left(y+z\right)^2-3yz\right]=0\)
\(\Rightarrow\left[x-\left(y+z\right)\right]\left[x^2+x\left(x+y\right)+y^2+z^2-yz\right]=0\)
Mà \(x^2+x\left(x+y\right)+y^2+z^2-yz>0\)
\(\Rightarrow x=y+z\)
\(\Rightarrow\left(y+z\right)^2=2\left(y+z\right)\)
\(\Rightarrow\left(y+z\right)^2-2\left(y+z\right)=0\)
\(\Rightarrow\left(y+z\right)\left(y+z-2\right)=0\)
\(\Rightarrow\hept{\begin{cases}y=z=1\\x=2\end{cases}}\)
Bài 1 Cho hệ phương trình mx−y=1 va x+4.(m+1)y=1. Tìm m nguyên để hệ phương trình có no duy nhất là no nguyên
Bài 2
Bài 2
Cho hệ phương trình x+my=1 và mx−y=−m
a) Chứng minh rằng hệ phương trình đã cho luôn có nghiệm duy nhất với mọi m ( đã xong )
b)Tìm m để hệ phương trình có nghiệm duy nhất (x, y) thỏa mãn x<1 và y<1 (đã xong )
c)tìm hệ thức liên hệ giữa x và y không phụ thuộc vào giá trị của m
Bài 3
Cho hệ phương trình x−my=2−4m và mx+y=3m+1) Giải hệ phương trình khi m = 2 ( xong )
b) Chứng minh hệ luôn có nghiệm với mọi giá trị của m . Giả sử (xo ,yo) là một nghiệm của hệ .Chứng minh đẳng thức x2o+y2o−5(x2o+y2o)+10=0xo2+yo2−5(xo2+yo2)+10=0
Mọi người giúp mk làm câu c bài 2 , 3 với
Tìm nghiệm nguyên của phương trình: \(x^2-y^2=5\)
giải giúp mk vs
mk tick cho
\(x^2-y^2=5\)
\(\Leftrightarrow\left(x-y\right)\left(x+y\right)=5\)
=> x-y và x+y \(\inƯ\left(5\right)=\left\{\pm1,\pm5\right\}\)
Ta có bảng sau:
x-y | -5 | -1 | 1 | 5 |
x+y | -1 | -5 | 5 | 1 |
x | -3 | -3 | 3 | 3 |
y | 2 | -2 | 2 | -2 |
Vậy (x,y)=(-3,2),(-3,-2),(3,2),(3,-2)
xin lỗi nhưng mình ghi nhầm đề:
Tìm nghiệm nguyên của PT; \(x^2-2y^2\text{=}5\)
Tìm x,y biết: 54x^3+1=y^3
ai giải mình tick cho (các bạn trình bày cách làm)
tìm nghiệm nguyên của phương trình
1 \(x^4+2x^3+2x^2=y^2-3\)
2 \(54x^3+1=y^3\)