xác định hàm số f(x) biết : a) f(x) = 3x - 1+2f(-x) .b) f(x) = 2-3f(1/3)
1/cho hàm số f(x) thỏa mãn f(x) + 2f(2-x)=3x với mọi số thực x.Vậy f(2)=?
2/CHo hàm số f(x) xác định với mọi x thuộc R.Biết rằng với mọi x, ta đều có f(x)+3f(1/x)=x^2 Tính f(2), ta thu được kết quả là f(2)=
3/ TÍnh E=10,11+11,12+12,13+13,14+.........+ 98,99 + 99,10
Cho hàm số y = f(x) xác định với mọi x khác 0.
Biết với mọi x khác 0 ta có: 2f(x) -3f(1/x) = x^3. Hãy tính f(2)
\(2f\left(x\right)-3f\left(\frac{1}{x}\right)=x^3\)
Thay \(x=2\) vào đẳng thức trên ta có : \(2f\left(2\right)-3f\left(\frac{1}{2}\right)=8\)
\(\Leftrightarrow2\left[2f\left(2\right)-3f\left(\frac{1}{2}\right)\right]=16\Leftrightarrow4f\left(2\right)-6f\left(\frac{1}{2}\right)=16\)(1)
Thay \(x=\frac{1}{2}\) vào đẳng thức trên ta có : \(2f\left(\frac{1}{2}\right)-3f\left(2\right)=\frac{1}{8}\)
\(\Leftrightarrow3\left[2f\left(\frac{1}{2}\right)-3f\left(2\right)\right]=\frac{3}{8}\Leftrightarrow6f\left(\frac{1}{2}\right)-9f\left(2\right)=\frac{3}{8}\)(2)
Lấy (1) cộng (2) ta được : \(4f\left(2\right)-9f\left(2\right)=16+\frac{3}{8}\Leftrightarrow-5f\left(2\right)=\frac{131}{8}\)
\(\Rightarrow f\left(2\right)=\frac{131}{8}:\left(-5\right)=-\frac{131}{40}\)
Cho hàm số y = f(x) xác định với mọi x khác 0.
Biết với mọi x khác 0 ta có: 2f(x) -3f(1/x) = x^3. Hãy tính f(2)
Xét x = 2
=> 2f(2) - 3f(1/2) = 8
Xét x = 1/2
=> 2f(1/2) - 3f(2) = 1/8
Đặt a = f(2), b = f(1/2)
Ta có hệ PT:
2a - 3b = 8
2b - 3a = 1/8
<=>
2a = 8 + 3b
16b - 24a = 1
<=>
2a = 8 + 3b
16b - 12(8 + 3b) = 1
<=>
2a = 8 + 3b
16b - 96 - 36b = 1
<=>
2a = 8 + 3b
20b = -97
<=>
a = -131/40
b = -97/20
Vậy f(2) = -131/40
Xác định công thức hàm số:
a/ f(x)+3f\(\left(\frac{1}{3}\right)\)=\(x^2\)
b/ f(x)+2f\(\left(\frac{1}{x}\right)=2x+\frac{1}{x}\)
c/ f(x)+3f(-x)=x+1
Xác định công thức hàm số:
a/ f(x)+3f\(\left(\frac{1}{3}\right)\)=\(x^2\)
b/ f(x)+2f\(\left(\frac{1}{x}\right)=2x+\frac{1}{x}\)
c/ f(x)+3f(-x)=x+1
Xác định công thức hàm số:
a/ f(x)+3f\(\left(\frac{1}{3}\right)\)=\(x^2\)
b/ f(x)+2f\(\left(\frac{1}{x}\right)=2x+\frac{1}{x}\)
c/ f(x)+3f(-x)=x+1
1/cho hàm số f(x) thỏa mãn f(x) + 2f(2-x)=3x với mọi số thực x.Vậy f(2)=?
2/CHo hàm số f(x) xác định với mọi x thuộc R.Biết rằng với mọi x, ta đều có f(x)+3f(1/x)=x^2 Tính f(2), ta thu được kết quả là f(2)=
Mình vẫn chưa hiểu cái đề, mn giải thích cho mình nha
bài 1: f(x) + 2f(2-x)=3x (1)
f(2-x)+2[(2-(2-x)]=3(2-x) suy ra f(2-x)+2f(x)=6-3x suy ra 2f(2-x)+4f(x)=12-6x (2)
Lấy (2)-(1) ta có: 4f(x)-f(x)=12-6x-3x suy ra f(x)=4-3x
vậy f(2)=4-3*2=-2
Bài 2 tương tự: f(x)+3f(1/x)=x^2 (1)
f(1/x)+3f(x)=1/x^2 suy ra 3f(1/x)+9f(x)=3/x^2 (2)
Lấy (2)-(1) ta có: 9f(x)-f(x)=3/x^2-x^2 suy ra f(x)=(3-x^4)/8x^2
Vậy f(2)=(3-2^4)(8*2^2)=-13/32
Bài 2:
Đúng với x = 2 . => f(2) + 3f(1/2) = 2^2 = 4
=> f(2) + 3f(1/2) = 4 ( 1 )
Đúng với x = 1/2 => f(1/2) + 3f(2) = (1/2)^2 = 1/4.
=> 3f(2) + f (1/2) = 1/4.=> 9f(2) + 3f(1/2) = 3/4 ( 2 )
Lấy (2) trừ (1) ta đc : 8 f(2) = 3/4 - 4 = -13/4
=> f(2) = -13 / 32.
Xác định công thức hàm số:
a/ f(x)+3f$$=\(x^2\)
b/ f(x)+2f\(\left(\frac{1}{x}\right)=2x+\frac{1}{x}\)
c/ f(x)+3f(-x)=x+1
Help me mình đang cần gấppppppppppppp
cho hàm số f(x) được xác định với mọi x thuộc r,thỏa mãn tính chất f(x)-3f(x+1)=2x^2+1.a)tính f(2).b)xác định công thức hàm số f(x)