Cho tam giác ABC .I là giao điểm của ba đường phân giác .biết BI=\(\sqrt{5}\) , CI =\(\sqrt{10}\) .tính AB=
Cho tam giác ABC . I là giao điểm của ba đường phân giác biết BI = căn 5 , IC = căn 10 .Tính AB
Cho tam giác ABC . I là giao điểm của ba đường phân giác biết BI = căn 5 , IC = căn 10 .Tính AB
Cho tam giác ABC vuông tại A . I là giao điểm của ba đường phân giác biết BI = căn 5 , IC = căn 10 .Tính AB
Gọi D là giao của BI và AC. kẻ CH vuông góc với BI căt AB tại K ; H thuộc BI
=> Tam giác ADB đồng dạng với HDC (góc ADB = HDC do đối đỉnh; góc BAD = CHD = 90o)
=> góc ABD = HCD
Mà ABD = góc ABC / 2 => Góc HCD = góc ABC / 2
Ta có: Góc HCI = Góc HCD + DCI = ABC / 2 + ACB /2 = (ABC + ACB)/ 2 = 90o/2 = 45o (góc ABC + ACB = 90o do tam giác ABC vuông tại A)
Ta có Tam giác HCI vuông tại H; góc HCI = 45o => tam giác HCI cân tại H => IH = HC
Áp dung ĐL Pi ta go trong tam giác HIC có: 2.IH2 = CI2 = 10 => IH = HC = \(\sqrt{5}\)
=> BH = BI + IH = 2.\(\sqrt{5}\)
Áp dụng ĐL Pi ta go trong tam giác vuông BHC có: BC = \(\sqrt{BH^2+CH^2}=\sqrt{\left(2\sqrt{5}\right)^2+\left(\sqrt{5}\right)^2}=5\)
Kẻ IM; IN lần lượt vuông góc với BC; AB
Áp dụng công thức tính diện tích tam giác trong tam giác BIC => IB. CH = IM. BC
=> IM = IB. CH : BC = \(\sqrt{5}\). \(\sqrt{5}\) : 5 = 1 cm
+) Tam giác AIN vuông tại N có góc NAI = 450 (do AI là p/g của góc BAC) => tam giác AIN cân tại N => AN = NI
Mà NI = MI (do NI: MI là khoảng cách t ừ I xuống AB ; BC mà BI là p/ g của góc ABC)
=> AN = IM = 1 cm
Áp dụng ĐL pI ta go trong tam giác vuông IBM có: BM = \(\sqrt{IB^2-IM^2}=\sqrt{5-1}=2\) cm
ta có: BM = BN (do tam giác IBN = IBM)
=> BN = 2 cm
Vậy AB = BN + NA = 2 + 1 = 3 cm
Cho tam giác ABC vuông tại A . I là giao điểm của ba đường phân giác biết BI = căn 5 , IC = căn 10 .Tính AB
Mình bít AB = 3 rồi đáp án của mình mà bạn phải có lời giải
Kẻ CH vuông góc với BI
+) Dễ có : tam giác AEB đồng dạng với tam giác HEC (g - g)
=> góc ABE = HCE = góc ABC / 2 (do BI là p/g của góc B )
+) Ta lại có: góc ECI = 1/2 góc ACB (do CI là p/g của góc ACB )
=> góc HCI = góc HCE + ECI = 1/2. (ABC + ACB) = 1/2. 90o = 45o
Mà tam giác HIC vuông tại H => tam giác HIC vuông cân tại H
=> HC = HI
Áp dụng ĐL pi - ta go ta có: CI2 = 2.CH2 => CH = \(\sqrt{\frac{10}{2}}=\sqrt{5}\)
=> CH = IH = BI = \(\sqrt{5}\)
=> I là trung điểm của BH
+) Kẻ IM vuông góc với BC ; HK vuông góc với BC
=> IM// HK mà I là trung điểm của BH => M là trung điểm của BK
=> IM là đường trung bình của tam giác BHK => IM = 1/2 HK
+) Dễ có : \(\frac{1}{HK^2}=\frac{1}{BH^2}+\frac{1}{CH^2}\); BH = 2\(\sqrt{5}\); CH = \(\sqrt{5}\)
=> HK = 2 cm
=> IM = 1 cm
Kẻ IN vuông góc với AB
+) Do BI là p/g của góc ABC => IM = IN => BN = BM
- Tính BM : theo ĐL Pi- ta go trong tam giác v IBM
=> \(BM=\sqrt{BI^2-IM^2}=2\) cm => BN = 2 cm
- Mặt khác tam giác ANI vuông có góc NAI = 45o
Nên tam giác ANI cân tại N => AN = NI = IM = 1 cm
Vậy AB = AN + BN = 1 + 2 = 3 cm
Cho tam giác ABC vuông tại A có AB = 5, I là giao điểm ba đường phân giác của tam giác sao cho CI = 3. Tính BC
Cho tam giác ABC vuông tại A,phân giác AD
a,CM \(\frac{\sqrt{2}}{AD}=\frac{1}{AB}+\frac{1}{AC}\)
b, Gọi I là giao điểm các đường phân giác của tam giác ABC, biết \(IB=\sqrt{5},IC=\sqrt{10}\). Tính diện tích tam giác ABC
Cho tam giác ABC vuông tại A,phân giác AD
a,CM √2AD =1AB +1AC
b, Gọi I là giao điểm các đường phân giác của tam giác ABC, biết IB=√5,IC=√10. Tính diện tích tam giác ABC
a) Đặt AB = c; AC = b; AD = d.
Áp dụng công thức tính diện tích tam giác bằng ½ tích hai cạnh nhân sin góc xen giữa ta có:
S ABD = ½.AB.AD.sin BAD = ½.cd.sin 45º = ½cd.1/√2
Tương tự: S ACD = ½bd.1/√2
=> S ABC = S ABD + S ACD = ½cd.1/√2 + ½bd.1/√2 = ½d(b + c)/√2
mà S ABC = ½bc
=> ½d(b + c)/√2 = ½bc
=> (b + c)/bc = √2/d
<=> 1/b + 1/c = √2/d
b,Kẻ CH ⊥ BI và CH cắt BA tại K. Tam giác BCK có BH vừa là phân giác vừa là đường cao Tam giác BCK cân tại B => BH là đường trung tuyến => CH = KH. và KC = 2HC.
Đặt BC = x Ta có: AD = BK - AB = BC - AB = x - AB
Gọi giao điểm của AC và BH là E.
Xét tam giác AEB và tam giác HEC có góc EAB = góc EHC = 90độ và góc AEB = góc HEC (đối đỉnh)
tam giác AEB ~ tam giác HEC(g.g)
Góc HCE = góc ABE.
Góc HCE = góc ABC/2 (1)
Mà Góc ECI = gócACB/2 (2)
Từ (1) và (2) Góc ICH = Góc HCE + Góc ECI = (gócABC + góc ACB)/2 = 90độ/2 = 45độ.
Xét tam giác HIC có góc IHC = 90độ và Góc ICH = 45 độ (góc còn lại chắc chắn = 45 độ)
tam giác HIC vuông cân tại H => HI = HC.
Áp dụng đinh lý Py-ta-go cho tam giác này ta được: 2HI² = IC²
√2.IH = IC hay CH = IC/√2.
CH =HI=√10 /√2
Suy ra BH=HI+IB=√10 /√2+√5
=>BC=√((√10 /√2+√5)²+(√10 /√2)²)
KC = 2CH = 2.√10/√2
Xét tam giác: AKC có góc KAC = 90độ và Áp dụng định lý Py-ta-go ta có: KC² = AK² + AC²
AC² = KC² - AK² hay AC² = (2.√10/√2)² - (x - AB)² (3)
Tương tự đối với tam giác ABC ta có: AC² = BC² - AB² AC² = x² - AB² (4)
Từ (3) và (4) suy ra (2.√10/√2)² - (x - AB)² = x² - AB²
20 - (x² - 2ABx +AB²) = x² - AB²
=>10=x(x-AB)
sau đó tính AB rồi tính AC And S ABC
Tam giác ABC vuông tại A, gọi I là giao điểm của các đường phân giác . biết \(IB=\sqrt{5}cm,IC=\sqrt{10}cm.\)Tính độ dài AB và AC
tam giác ABC vuông tại A, gọi I là giao điểm của các đường phân giác . Biết \(IB=\sqrt{5}cm,IC=\sqrt{10}\) . Tính các độ dài AB,AC
Cho tam giác ABC, I là giao điểm của 3 đường phân giác. Biết AC - AB = CI -BI.
CMR : tam giác ABC cân
Ta có hình vẽ:
Vẽ hình hơi xấu mong bạn thông cảm cấy :)))))))