Chứng tỏ rằng A=11...1222...225 là số chính phương
Biết có n chữ số 1 và có n+1 chữ số 2
Chứng tỏ rằng A= 11...1222...2 (n chữ số 1; n chữ số 2) là tích của hai số tự nhiên liên tiếp.
1,Chứng minh rằng:trong ba số tự nhiên bất kỳ đều chọn được 2 số có tổng chia hết cho 2
2,a,Chứng minh rằng,nếu p và 8p-1 là số nguyên tố thì 8p+1 là hợp số
b,Chứng tỏ rằng: A=11...1222...25 là số chính phương( Có n chữ số 1,n+1 chữ số 2)
3,Cho đoạn thẳng AB,điểm O thuộc tia đối của tia AB.Gọi M,N thứ tự là trung điểm của OA,OB
a,Chứng tỏ rằng:OA<OB
b,Trong 3 điểm O,M,N.điểm nào nằm giữa 2 điểm còn lại
c,Chứng tỏ rằng,độ dài đoạn thẳng MN không phụ thuộc vào vị trí của điểm O[O thuộc tia đối của tia AB]
a) Tìm 4 số tự nhiên liên tiếp? Biết rằng tích của chúng là 3024.
b) Chứng tỏ rằng: B = 111...1222...2 ( có n chữ số 1, n chữ số 2 và \(n\inℕ^∗\)) là tích của 2 số tự nhiên liên tiếp
a) Tìm 4 số tự nhiên liên tiếp? Biết rằng tích của chúng là 3024.
Gọi 4 số tự nhiên liên tiếp đó lần lượt là a,a+1,a+2,a+3
Theo bài ra ta có
a(a+1)(a+2)(a+3)=3024
<=> (a2+3a)(a2+3a+2)=3024 (1)
Đặt a2+3a+1=b
(1)<=> (b-1)(b+1)=3024
<=> b2=3025
<=> a2+3a+1=55
<=> (a+1)(a+2)=56=7.8
<=>\(\hept{\begin{cases}a+1=7\\a+2=8\end{cases}}\)
<=> a=6
Vậy 4 số tự nhiên liên tiếp cần tìm là 6,7,8,9
a) 3024 chia hết cho cả 2 và 3
=> chia hết cho 6;
3024 = 6 x 504
504 = 6 x 84
84 = 6 x 14
14 = 7 x 2
=> 3024 = 7 x 2 x 6 x 6 x 6
= 6 x 7 x 2 x 6 x 6
= 6 x 7 x 8 x 9
Đáp số : 6x7x8x9
a, 3024 chia hết cho cả 2 và 3 ==> chia hết cho 6;
3024 = 6 x 504
504 = 6 x 84
84 = 6 x 14
14 = 7 x 2
==> 3024 = 7 x 2 x 6 x 6 x 6 = 6 x 7 x 2 x 6 x 6 = 6 x 7 x 8 x 9
b, 111...1222...2
= 111...1. 10^n + 222...2
= 111...1. 10^n + 2. 111...1 (n chữ số 1)
= 111...1.(10^n + 2) (n chữ số 1)
Nhận xét:
10n = 999...9 + 1 (n chữ số 9)
= 9. 111...1 + 1
Đặt a = 111...1
=> 111...1222...2
= a.(9a +1 + 2)
= a.(9a+ 3) = 3a(3a + 1) hai số 3a ; 3a + 1 là số tự nhiên liên tiếp
=> đpcm
Chứng minh số
11...122..225 (có n chữ số 1, n + 1 chữ số 2 và 1 chữ số 5)
là số chính phương.
\(11...122..225=111...1\times10^{n+2}+22..222\times10+5\)
\(=\left(10^n-1\right)\div9\times10^{n+2}+\left(10^{n+1}-1\right)\div9\times10+5\)
Quy đồng hết lên, xong xài hằng đẳng thức đưa về dạng bình phương.
Ta đựơc đáp án là: \(\left(^{\left(10^{n+1}+5\right)\div3}\right)^2\)là số chính phương ^^
ĐÚNG nhaaaaaaaaaaa
bạn ơi cho mình hỏi chút ???
(10^n+1 -1):9*10 phải bằng 11....111(n+1 cs 1) chứ sao lại bằng 22.....22 ( n+1 cs 2)
cho số a=11.........1 và có n chữ số 1
số b=100.....05 và có n-1 chữ số 0
n là số tự nhiên lớn hơn 1
chứng tỏ ab+1 là số chính phương
cho B=11...1122...225 ,B là một số gồm n chữ số 1 , n+1 chữ số thứ 2 và một chữ số thứ 5 .Chứng minh B là một số chính phương.
chứng minh rằng số 111...1222...2(n chữ số 1 và n chữ số 2) là tích của 2 số nguyên liên tiếp
111...1222...2 = 111...1. 10n + 222...2 = 111...1. 10n + 2. 111...1 (n chữ số 1)
= 111...1.(10n + 2) (n chữ số 1)
Nhận xét: 10n = 999...9 + 1 (n chữ số 9)
= 9. 111...1 + 1
đặt a = 111...1 => 111...1222...2 = a.(9a +1 + 2) = a.(9a+ 3) = 3a(3a + 1)
hai số 3a ; 3a + 1 là số tự nhiên liên tiếp
=> đpcm
chứng minh các số sau chính phương:
a) A=11...155..56 (có n chữ số 1, có n-1 chữ số 5)
b) B=a.b +4 với a=11...1 (có n chữ số 1) và b=100...011 (có n-2 chữ số 0)
c) C= 11...1 (cs 2n chữ số 1)+ 11...1(có n+1 chữ số 1) + 666...6 (có n số 6) +8
giúp mình với ạ, mình cảm ơn