Chứng tỏ rằng tích của hai số nguyên tố là hợp số
cho p là số nguyên tố (p>3)
chứng tỏ rằng 4p+1 là hợp số biết 2p+1 là số nguyên tố
chứng tỏ rằng 10p+1 là hợp số biết 5p+1 là số nguyên tố
vì p là số nguyên tố >3 =>p=3k+1 hoặc 3k+2 k là stn nếu p =3k+1 thì 2p+1=2(3k+1)+1=6k+3=6(k+2) chia hết cho 6 là hợp số loại=>p=3k+2 nếu p=3k+2 thì 4p+1=4(3k+2)+1=12k+9=3(4k+3) chia het cho 3 là hợp số (đúng) =>4p+1 là hợp số phần tiếp theo tương tự như thế K TỚ NHÁ !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
cho p và 2p +1 đều là số nguyên tố (p>5).Hỏi 4p +1 là sồ nguyên tố hay hợp số b, p và p+4 là nguyên tố lớn hơn 3 . chứng tỏ rằng p+8 là hợp số c, với p là nguyên tố và một trong hai số 8p-1 và 8p+1 là số nguyên tố thì số còn lại là số nguyên tố hay hợp số
p là số nguyên tố lớn hơn 5 nên p có dạng 3k+1 hoặc 3k+2.
+Nếu p = 3k+1 thì 2p+1=2(3k+1)+1=6k+3 chia hết cho 3 => 2p+1 không phải số nguyên tố => loại
+Vậy p có dạng 3k+2
Khi đó 4p+1=4(3k+2)+1=12k+9 chia hết cho 3.
Vậy 4p+1 là hợp số,
cho p và 2p +1 đều là số nguyên tố (p>5).Hỏi 4p +1 là sồ nguyên tố hay hợp số b, p và p+4 là nguyên tố lớn hơn 3 . chứng tỏ rằng p+8 là hợp số c, với p là nguyên tố và một trong hai số 8p-1 và 8p+1 là số nguyên tố thì số còn lại là số nguyên tố hay hợp số
p là số nguyên tố lớn hơn 5 nên p có dạng 3k+1 hoặc 3k+2.
+Nếu p = 3k+1 thì 2p+1=2(3k+1)+1=6k+3 chia hết cho 3 => 2p+1 không phải số nguyên tố => loại
+Vậy p có dạng 3k+2
Khi đó 4p+1=4(3k+2)+1=12k+9 chia hết cho 3.
Vậy 4p+1 là hợp số,
Bài 1. chứng mình rằng tích của hai số nguyên tố là một hợp số.
gọi hai số ng t là a và b.a.b=c
U(c)={1.;a;b;c}
vì a;b\(\ne\)1=>a.b\(\ne\)a và a.b\(\ne\)b
=>c có ít nhất 4 ước.
=>tích hai số nguyên tố là 1 hợp số.
Chứng tỏ rằng tích của hai thừa số nguyên tố là một hợp số
---------------
giả sử 2 số nguyên tố đó là a,b
do a,b là số nguyên tố
=> a có 1 ước là 1 và a
=>b có 1 ước là 1 và b
do đó tích ab có 3 ước là a,b,1
mà theo định nghĩa số có nhiều hơn 2 ước là hợp số
Suy ra tích của hai số nguyên tố là hợp số
a,chứng tỏ rằng với mọi số tự nhiên n thì số 9^2n - 1 chia hết cho 2 và 5
b, chứng tỏ rằng p là số nguyên tố lớn hơn 3 và 2p+1 cũng là số nguyên tố thì 4p+1 là hợp số
Chứng tỏ 10^2015+2 là hợp số.
Bài 2:chứng tỏ rằng 3n+2 và2n +1 là hai số nguyên tố cùng nhau ( n thuộc N)
Cho q,p là hai số nguyên tố liên tiếp, 2<p<q. Chứng tỏ rằng: q+p/2 là một hợp số
Giả sử p < q
Do (p+q)/2 là trung bình cộng của p và q
=> p < (p+q)/2 < q (1)
mà p và q là 2 số nguyên tố liên tiếp nên giữa p và q là các hợp số (2)
Từ (1) và (2) => (p+q)/2 là hợp số (ĐPCM)
Vì p, q nguyên tố > 2 nên p và q là số lẻ
Do đó p + q là số chẵn nên p+q/2 chẵn nên p+q/2 chia hết cho 2
mà 2<p<q nên p+q/2>2 nên p+q/2 là hợp số
p là số lẻ sao có p/2 đc? Hay là (p+q)/2 hả bạn?
cho p và 2p +1 đều là số nguyên tố (p>5).Hỏi 4p +1 là sồ nguyên tố hay hợp số
b, p và p+4 là nguyên tố lớn hơn 3 . chứng tỏ rằng p+8 là hợp số
c, với p là nguyên tố và một trong hai số 8p-1 và 8p+1 là số nguyên tố thì số còn lại là số nguyên tố hay hợp số
help me!!!!!!!!!!!!
a)
p và 2p+1 nguyên tố
* nếu p = 3 thì p và 2p+1 đều nguyên tố, 4p+1 = 13 nguyên tố
* xét p # 3
=> 2p không chia hết cho 3, và 2p+1 là số nguyên tố > 3 nên không chia hết cho 3
=> 2p+2 chia hết cho 3 (do 3 số nguyên liên tiếp phải có 1 số chia hết cho 3)
=> 2(2p+2) = 4p+4 = 4p+1+3 chia hết cho 3 => 4p+1 chia hết cho 3
kết luận: 4p+1 nguyên tố nếu p = 3, và là hợp số nếu p nguyên tố # 3
cho p và 2p +1 đều là số nguyên tố (p>5).Hỏi 4p +1 là sồ nguyên tố hay hợp số
b, p và p+4 là nguyên tố lớn hơn 3 . chứng tỏ rằng p+8 là hợp số
c, với p là nguyên tố và một trong hai số 8p-1 và 8p+1 là số nguyên tố thì số còn lại là số nguyên tố hay hợp số
a )
* nếu p = 3 thì p và 2p+1 đều nguyên tố, 4p+1 = 13 nguyên tố
* xét p # 3
=> 2p không chia hết cho 3, và 2p+1 là số nguyên tố > 3 nên không chia hết cho 3
=> 2p+2 chia hết cho 3 (do 3 số nguyên liên tiếp phải có 1 số chia hết cho 3)
=> 2(2p+2) = 4p+4 = 4p+1+3 chia hết cho 3 => 4p+1 chia hết cho 3
kết luận: 4p+1 nguyên tố nếu p = 3, và là hợp số nếu p nguyên tố # 3
nhé !
.........
còn câu b ,c chưa nghĩ ra
Mình làm phần b hộ cho
vì p là số nguyên tố >3 => p có dạng 3k+1 hoặc 3k+2(k thuộc Z)
Vì p+4 cũng là số nguyên tố nên p#3k+2 vì nếu p=3k+2 thì p+4= 3k+2+4=3k+6 (là hợp số)
=> p=3k+1
Vậy p+8=3k+1+8=3k+9 (là hợp số)
k mình nha, ai k trả lời bên dưới mình sẽ k lại.
Chứng tỏ rằng nếu p là số nguyên tố lớn hơn 3 và 2p+1 cũng là số nguyên tố thì 4p+1 hợp số
Vì p là số nguyên tố lớn hơn 3, nên p = 3k+1 hoặc p = 3k+2 (k ∈ N*).
Nếu p = 3k+1 thì 2p+1 = 2(3k+1)+1 = 6k+3 ∈ 3 và 6k+3 > 3 nên 2p+1 là hợp số (loại).
Vậy p = 3k+2. Khi đó 4p+1 = 4(3k+2)+1 = 12k+9 ∈ 3 và 12k+9>3 nên là hợp số.
Chứng tỏ rằng nếu p là số nguyên tố lớn hơn 3 và 2p + 1 cũng là số nguyên tố thì 4p + 1 hợp số