Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Mỹ Hạnh
Xem chi tiết
Nguyễn Ngọc Thanh Lan
Xem chi tiết
Nguyen Tan Dung
14 tháng 2 2017 lúc 21:15

a) Do 1 là số nguyên dương nhỏ nhất => x+2016=1 => x=1-2016=-2015.

b) Do -567<x<567 => x\(\in\){-566;-565;-564;...;566}

=> Tổng các giá trị của x là: (-566+566)+(-565+565)+...+(-1+1)=0+0+0+...+0=0

                    

NGUYỄN THANH TÚ
Xem chi tiết
thiện nhân
6 tháng 2 2017 lúc 16:25

a, Vì x + 2011 là số nguyên dương nhỏ nhất nên x là hiệu của số nguyên dương nhỏ nhất và 2011.

x = 1 - 2011

x = -2010.

b, -567 < x < 567

-566 \(\le x\le566\)

Vậy tổng các số nguyên x là 0.

Phạm Anh Tuấn
Xem chi tiết
Xem chi tiết

Giả sử (x;y) là cặp số nguyên dương cần tìm. Khi đó ta có:
(xy-1) I (x^3+x) => (xy-1) I x.(x^2+1) (1)
Do (x; xy-1) =1 ( Thật vậy: gọi (x;xy-1) =d => d I x => d I xy => d I 1).
Nên từ (1) ta có:
(xy-1) I (x^2+1)
=> (xy-1) I (x^2+1+xy -1) => (xy-1) I (x^2+xy) => (xy-1) I x.(x+y) => (xy-1) I (x+y)
Điều đó có nghĩa là tồn tại z ∈ N* sao cho:
x+y = z(xy-1) <=> x+y+z =xyz (2)

[Đây lại có vẻ là 1 bài toán khác]
Do vai trò bình đẳng nên ta giả sử: x ≥ y ≥ z.
Từ (2) ta có: x+y+z ≤ 3x => 3x ≥ xyz => 3 ≥ yz ≥ z^2 => z=1
=> 3 ≥ y => y ∈ {1;2;3}
Nếu y=1: x+2 =x (loại)
Nếu y=2: (2) trở thành x+3 =2x => x=3
Nếu y=3: x+4 = 3x => x=2 (loại vì ta có x≥y)
Vậy khi x ≥ y ≥ z thì (2) có 1 nghiệm (x;y;z) là (3;2;1)
Hoán vị vòng quanh được 6 nghiệm là: .....[bạn tự viết nhé]

Vậy bài toán đã cho có 6 nghiệm (x;y) là : .... [viết y chang nhưng bỏ z đi]

Bùi Vương TP (Hacker Nin...
15 tháng 2 2019 lúc 21:05

Xét x= 1 => , từ đó có y=2∨y=3

Xét y=1 => , từ đó có x=2∨x=3

Xét x≥2 hoặc y≥2 . Ta có : (x,xy−1)=1. Do đó :

xy−1|x3+x⇒xy−1|x2+1⇒xy−1|x+y

=> x+y≥xy−1⇒(x−1)(y−1)≤2. Từ đó có  

=> x = y = 2 ( loại ) hoặc x = 2 ; y = 3 hoặc x = 3 ; y= 2

Vậy các cặp số ( x;y ) thỏa mãn là (1;2),(2;1),(1;3),(3;1),(2;3),(3;2)

Trên mạng làm sai, cái này mk đọc rồi, sai đó

Linhhhhhh
Xem chi tiết
Kill Myself
Xem chi tiết
Công Tử Họ Nguyễn
9 tháng 10 2018 lúc 21:27

Giả sử (x;y) là cặp số nguyên dương cần tìm. Khi đó ta có: 
(xy-1) I (x^3+x) => (xy-1) I x.(x^2+1) (1) 
Do (x; xy-1) =1 ( Thật vậy: gọi (x;xy-1) =d => d I x => d I xy => d I 1). 
Nên từ (1) ta có: 
(xy-1) I (x^2+1) 
=> (xy-1) I (x^2+1+xy -1) => (xy-1) I (x^2+xy) => (xy-1) I x.(x+y) => (xy-1) I (x+y) 
Điều đó có nghĩa là tồn tại z ∈ N* sao cho: 
x+y = z(xy-1) <=> x+y+z =xyz (2) 

[Đây lại có vẻ là 1 bài toán khác] 
Do vai trò bình đẳng nên ta giả sử: x ≥ y ≥ z. 
Từ (2) ta có: x+y+z ≤ 3x => 3x ≥ xyz => 3 ≥ yz ≥ z^2 => z=1 
=> 3 ≥ y => y ∈ {1;2;3} 
Nếu y=1: x+2 =x (loại) 
Nếu y=2: (2) trở thành x+3 =2x => x=3 
Nếu y=3: x+4 = 3x => x=2 (loại vì ta có x≥y) 
Vậy khi x ≥ y ≥ z thì (2) có 1 nghiệm (x;y;z) là (3;2;1) 
Hoán vị vòng quanh được 6 nghiệm là: .....[bạn tự viết nhé] 

Vậy bài toán đã cho có 6 nghiệm (x;y) là : .... [viết y chang nhưng bỏ z đi]

Kim
9 tháng 10 2018 lúc 21:27

 Giả sử (x;y) là cặp số nguyên dương cần tìm. Khi đó ta có: 
(xy-1) I (x^3+x) => (xy-1) I x.(x^2+1) (1) 
Do (x; xy-1) =1 ( Thật vậy: gọi (x;xy-1) =d => d I x => d I xy => d I 1).
Nên từ (1) ta có: 
(xy-1) I (x^2+1) 
=> (xy-1) I (x^2+1+xy -1) => (xy-1) I (x^2+xy) => (xy-1) I x.(x+y) => (xy-1) I (x+y) 
Điều đó có nghĩa là tồn tại z ∈ N* sao cho: 
x+y = z(xy-1) <=> x+y+z =xyz (2) 

[Đây lại có vẻ là 1 bài toán khác] 
Do vai trò bình đẳng nên ta giả sử: x ≥ y ≥ z. 
Từ (2) ta có: x+y+z ≤ 3x => 3x ≥ xyz => 3 ≥ yz ≥ z^2 => z=1 
=> 3 ≥ y => y ∈ {1;2;3} 
Nếu y=1: x+2 =x (loại) 
Nếu y=2: (2) trở thành x+3 =2x => x=3 
Nếu y=3: x+4 = 3x => x=2 (loại vì ta có x≥y) 
Vậy khi x ≥ y ≥ z thì (2) có 1 nghiệm (x;y;z) là (3;2;1) 
Hoán vị vòng quanh được 6 nghiệm là: .....[bạn tự viết nhé] 

Vậy bài toán đã cho có 6 nghiệm (x;y) là : .... [viết y chang nhưng bỏ z đi]

Hoàng Thế Hải
9 tháng 10 2018 lúc 21:34

Xét x= 1 => \(\dfrac{2}{y-1}\in\mathbb N\), từ đó có \(y=2\vee y=3\)

Xét y=1 => \(\dfrac{x^3+x}{x-1}=x^2+x+2+\dfrac{2}{x-1}\in\mathbb N\), từ đó có \(x=2\vee x=3\)

Xét \(x\ge 2\) hoặc \(y\ge 2\) . Ta có : \((x,xy-1)=1\). Do đó :

\(xy-1|x^3+x\Rightarrow xy-1|x^2+1\Rightarrow xy-1|x+y\)

=> \(x+y\ge xy-1\Rightarrow (x-1)(y-1)\le 2\). Từ đó có \((x-1)(y-1)=1\ \vee (x-1)(y-1)=2\) 

=> x = y = 2 ( loại ) hoặc x = 2 ; y = 3 hoặc x = 3 ; y= 2

Vậy các cặp số ( x;y ) thỏa mãn là (1;2),(2;1),(1;3),(3;1),(2;3),(3;2)

thư ngọc
Xem chi tiết
Bạch Đình Khang
Xem chi tiết
supersaiya
17 tháng 2 2016 lúc 12:53

bài 1 , a= 2004! : 7 nha

bài 2:x =2

Ad Dragon Boy
20 tháng 4 2017 lúc 19:33

1. a = 2004 

2. x = 2

Đúng 100%

Đúng 100%

Đúng 100%