Tìm x, y nguyên tố sao cho:x2-2x+1=(6y)2 - 2x+2
tìm hai số nguyên tố x và y sao cho:x2- 2x+1=6y2- 22x2x+2
tìm 2 số nguyên tố x và y sao cho: x^2 - 2x +1=6y^2 -2x +2
Tìm hai số nguyên tố x và y sao cho: x^2-2x+1=6y^2-2x+2
Tìm 2 số nguyên tố x,y sao cho: (x-1)(x+1)-2x= 6y2 -2x
tìm số nguyên tố x ; y sao cho x2-2x+1=6y2-2x+2
x2 - 2x+ 1 =6y2- 2x+ 2
=> x2- 2x+ 1- 2x -2 = 6y2
=> x2 - 1 = 6y2
=> xx + x - x -1 = 6y2
=> x( x+1) - (x +1) = 6y2
=> (x+1)(x-1)= 6y2 (1)
Nếu x lẻ => x+ 1 và x-1 chẵn (m)
nếu x chắn => x+ 1 và x-1 lẻ (n)
từ (m) và (n) => x+ 1 và x-1 cùng tính chẵn lẻ
+) x+ 1 và x-1 lẻ
(x+ 1)( x-1) lẻ = 6y2 chẵn ( vô lý)
+) x+ 1 và x-1 chẵn
nx : tích của hai số chẵn liên tiếp chia hết 8
=> (x+ 1)(x-1) chia hết 8
=> 6y2 chia hết 8
=> 3y2 chia hết 4
do 3 kch 4
=> y2 chia hết 4
do y là snt => y=2
Từ (1) => (x+1)(x-1) = 6x 4 = (5+1)(5-1)
=> x=5
vậy ...
=>
Tìm hai số nguyên tố x và y sao cho : (x-1)(x+1)-2x=6y2-2x
Tìm 2 số nguyên tố x và y sao cho : x2-2x+1=6y2-2x+2
Tìm 2 số nguyên tố x và y sao cho: x2-2x+1=6y2-2x+2
Biến đổi bt tương đương : (x^2-1)/2 =y^2
Ta có: vì x,y là số nguyên dương nên
+) x>y và x phải là số lẽ.
Từ đó đặt x=2k+1 (k nguyên dương);
Biểu thức tương đương 2*k*(k+1)=y^2 (*);
Để ý rằng:
Y là 1 số nguyên tố nên y^2 sẽ là 1 số nguyên dương mà nó có duy nhất 3 ước là :
{1,y, y^2} ;
từ (*) dễ thấy y^2 chia hết cho 2, dĩ nhiên y^2 không thể là 2, vậy chỉ có thể y=2 =>k=1;
=>x=3.
Vậy ta chỉ tìm được 1 cặp số nguyên tố thoả mãn bài ra là x=3 và y=2 (thoả mãn).
tích nha
tìm hai số nguyên tố x và y sao cho x2-2x+1=6y2-2x+2
link này nha : https://olm.vn/hoi-dap/question/86222.html
Ta có: x^2 – 2x + 1 = 6y^2 -2x + 2
=> x^2 – 1 = 6y^2 => 6y^2 = (x-1).(x+1) chia hết cho 2 , do 6y^2 chia hết cho 2
Mặt khác x-1 + x +1 = 2x chia hết cho 2 => (x-1) và (x+1) cùng chẵn hoặc cùng lẻ.
Vậy (x-1) và (x+1) cùng chẵn => (x-1) và (x+1) là hai số chẵn liên tiếp
(x-1).(x+1) chia hết cho 8 => 6y^2 chia hết cho 8 => 3y^2 chia hết cho 4 => y^2 chia hết cho 4 => y chia hết cho 2
y = 2 ( y là số nguyên tố) , tìm được x = 5
Ta có: x^2 – 2x + 1 = 6y^2 -2x + 2
=> x^2 – 1 = 6y^2 => 6y^2 = (x-1).(x+1) chia hết cho 2 , do 6y^2 chia hết cho 2
Mặt khác x-1 + x +1 = 2x chia hết cho 2 => (x-1) và (x+1) cùng chẵn hoặc cùng lẻ.
Vậy (x-1) và (x+1) cùng chẵn => (x-1) và (x+1) là hai số chẵn liên tiếp
(x-1).(x+1) chia hết cho 8 => 6y^2 chia hết cho 8 => 3y^2 chia hết cho 4 => y^2 chia hết cho 4 => y chia hết cho 2
y = 2 ( y là số nguyên tố) , tìm được x = 5