Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Phúc Hậu
Xem chi tiết
Bùi Hương Giang
1 tháng 11 2015 lúc 15:08

sorry , I don't know !!!

nguyen the ky
Xem chi tiết
ST
9 tháng 11 2016 lúc 12:44

Gọi d là UCLN(2n+3,3n+5) 

\(\hept{\begin{cases}2n+3⋮d\\3n+5⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(2n+3\right)⋮d\\2\left(3n+5\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}6n+9⋮d\\6n+10⋮d\end{cases}}}\)

\(\Rightarrow\left(6n+10\right)-\left(6n+9\right)⋮d\)

\(\Rightarrow1⋮d\)

=>d = 1

=>UCLN(2n+3,3n+5) = 1

=>2n+3 và 3n+5 là hai số nguyên tố cùng nhau

Gọi d là UCLN(5n+6,8n+7)

\(\Rightarrow\hept{\begin{cases}5n+6⋮d\\8n+7⋮d\end{cases}\Rightarrow\hept{\begin{cases}8\left(5n+6\right)⋮d\\5\left(8n+7\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}40n+48⋮d\\40n+35⋮d\end{cases}}}\)

\(\Rightarrow\left(40n+48\right)-\left(40n+35\right)⋮d\)

\(\Rightarrow13⋮d\)

\(\Rightarrow d\in\left\{1;13\right\}\)

Để \(\left(5n+6,8n+7\right)=1\)thì \(d\ne13\)

=> UCLN(5n+6,8n+7) = 1

Bùi Thế Hào
9 tháng 11 2016 lúc 11:55

B1) Gọi d là UCLN của (2n+3) và (3n+5)

Ta có: (2n+3):d và (3n+5):d => 3(2n+3):d và 2(3n+5):d

=> 2(3n+5)-3(2n+3):d <=> (6n+10-6n-9):d <=> 1:d. Do đó UCLN của 2 số đó là 1

Vậy chúng là 2 số nguyên tố cùng nhau.

B2) Cách giải tương tự. 

Phạm Trần Ái Ly
Xem chi tiết
2004 Nhung
Xem chi tiết
Nguyễn Thị Yến Nhi
Xem chi tiết
Xem chi tiết
Hoàng Tuyết Anh
Xem chi tiết
Sakura
Xem chi tiết
Võ Đông Anh Tuấn
20 tháng 7 2016 lúc 17:48

Tham khảo nha :

Câu hỏi của Nguyễn Thị Nga - Toán lớp 6 - Học toán với OnlineMath

Chúc bạn học tốt

Trần Thu Ha
Xem chi tiết