TÌM CÁC SỐ TN SAO CHO CÁC SÓ SAU ĐỀU LÀ CÁC SNT :N+1 N+3 N+5 N+7 N+9 N+11 N+13
Tìm tất cả các STN n để mỗi số sau đều là SNT
n+1 ; n+3 ; n+7 ; n+9 ; n+13 ; n+15
Câu hỏi của Nguyễn Lịch Tiểu - Toán lớp 6 - Học toán với OnlineMath
Em tham khảo tại link trên nhé.
Tìm tất cả SNT n để mỗi số sau đều là SNT :
n+1;n+3;n+7;n+9;n+13;n+15
Nếu n=0 thì n + 9 = 0 + 9 = 9; n + 15 = 0 + 15 = 15 đều là hợp số (loại)
Nếu n = 1 thì n + 3 = 1 + 3 = 4; n + 7 = 1 + 7 = 8; n + 9 = 1 + 9 = 10; n + 13 = 1 + 13 = 14; n + 15 = 1 + 15 = 16 đều hợp số (loại)
Nếu n = 2 thì n + 7 = 2 + 7 = 9; n + 13 = 2 + 13 = 15 là hợp số (loại)
Nếu n = 3 thì n + 1 = 3 + 1 = 4; n + 3 = 3 + 3 = 6; n + 7 = 3 + 7 = 10; n + 9 = 3 + 9 = 12; n + 13 = 3 + 3 = 16; n + 15 = 3 +15=18 đều là hợp số (loại)
Nếu n = 4 thì n + 1 = 4 + 1 = 5; n + 3 = 4 + 3 = 7; n + 7 = 4 + 7 = 11; n + 13 = 13 + 4 = 17; n + 15 = 15 + 4 = 19; n +9= 4 + 9= 13 đều là số nguyên tố (chọn)
Nếu n = 5 thì n + 1 = 1 + 5= 6;n+ 3 = 5 + 3 = 8;n + 9 = 5 + 9 = 14;n + 13 = 5 + 13 = 18;n + 15 = 15 + 15 = 20 đều là hợp số (loại)
Xét n> 5 thì n = 5k + 1 hoặc 5k + 2 hoặc 5k + 3 hoặc 5 k + 4
Nếu n = 5k+ 1 thì n + 9 = 5k + 1 + 9 = 5k + 10 = 5x (k + 2) chia hết cho 5 (loại)
Nếu n = 5k + 2 thì n + 3 = 5k + 2 + 3 = 5k + 5 = 5 x (k+ 1) chia hết cho 5;n + 13 = 5k+ 2 + 13 = 5k+ 15 = 5 x(k+3)chia hết cho 5 (loại)
Nếu n=5k + 3 thì n + 7 = 5k + 3 + 7 = 5k + 10 = 5 x (k+2) chia hết cho 5 (loại)
Nếu n = 5k + 4 thì n + 1 = 5k + 4 + 1 = 5k + 5 = 5 x (k+ 1) chia hết cho 5 (loại)
Suy ra n < 5. Vậy n = 4 thì n + 1; n + 3;n + 9; n + 3;n + 13; n + 15 là số nguyên tố.
tìm số TN nhỏ nhất để các PS sau đều là PS tối giản
n+7/3 ; n+8/4 ; n+9/5 ; n+10/6 ;n+11/7
Tìm các số tự nhiên n sao chi n+1,n+3,n+7,n+9,n+13,n+15 đều là các số nguyên tố
Vì n là số tự nhiên nên n thuộc (0:1:2:3...)
Ta xét cá trường hợp sau
Nếu n=0 thì
n+15=0+15=15-là hợp số (loại)
Nếu n=1 thì
n+1=1=2là hợp số(loại)
Nếu n=2 thì
n+7=2+7=9_là hợp số loại
Nếu n=3 thì
n+3=3+3=6 là hop số loại
Nếu n=4 thì
n+1=4+1+5
n+3=4+3+7
n+7=4+7=11
n+9=4+9=13
n+13=4+13=17
n+15=4+15=19
là số nguyên tố
với n >5(xét trong phép chia cho 4)
Nếu n chia 4 dư 1
Đặt n=4k+1
n+3=4k+1+3=4k+4=4*(k+1)là số chia hết cho 4
Mà n+3>4 vây n+3 là số nguyên tố loai
nếu n:4 dư 2
Đặt n=4k+2... Bạn tụ thử các trường hop dư của n nhé ! mình motr tay quá rồi
Vậy n=4
Câu hỏi của Nguyễn Lịch Tiểu - Toán lớp 6 - Học toán với OnlineMath
Em tham khảo tại link trên nhé.
Tìm tất cả các số tự nhiên n sao cho n+1,n+3,n+7,n+9,n+13,+15 đều là số nguyên tố
Câu hỏi của Nguyễn Lịch Tiểu - Toán lớp 6 - Học toán với OnlineMath
Em tham khảo tại link bên trên nhé.
Tìm tất cả các số tự nhiên n sao cho\(n+1,n+3,n+7,n+9,n+13,n+15\) đều là các số nguyên tố
1. Tìm số nguyên tố, biết rằng số đó bằng tổng của hai số nguyên tố và bằng hiệu của hai số nguyên tố
2. Cho ba số nguyên tố lớn hơn 3, trong đó số sau lớn hơn số trước là d đơn vị. Chứng minh rằng d chia hết cho 6
3. Cho p là số nguyên tố lớn hơn 3. Biết p + 2 cũng là SNT. Chứng minh rằng p + 1 chia hết cho 6
4. Cho p và p + 4 là các SNT ( p > 3). Chứng minh rằng p + 8 là hợp số
5. Cho p và 8p - 1 là các SNT. Chứng minh rằng 8p + 1 là hợp số
6. Tìm tất cả các số tự nhiên n để mỗi số sau đều là SNT : n + 1 : n + 3 ; n + 7 ; n + 9 ; n + 13 ; n + 15
Giúp mk vs, mk đang cần gấp lắm nhé! Ai lm trc mk sẽ k cho. Các cậu bt lm bài nào thì chỉ cho mk nhé!
1
gọi số cần tìm là p.dễ thấy p lẻ
=>p=a+2 và p=b-2
=>a=p-2 và b=p+2
vì p-2,p,p+2 là 3 số lẻ liên tiếp nên có một số chia hết cho 3
với p-2=3=>p=5=7-2(chọn)
p=3=>p=1+2(loại)
p+2=3=>p=1(loại)
vậy p=5
2
vì p1, p2, p3 là 3 số nguyên tố (SNT) > 3
theo giả thiết:
p3 = p2 + d = p1 + 2d (*)
=> d = p3 - p2 là số chẵn ( vì p3, p2 lẻ)
đặt d = 2m, xét các trường hợp:
* m = 3k => d chia hết cho 6
* m = 3k + 1: khi đó 3 số là:
p2 = p1 + d = p1 + 2m = p1 + 6k + 2
p3 = p1 + 2d = p1 + 4m = p1 + 12k + 4
do p1 là SNT > 3 nên p1 chia 3 dư 1 hoặc 2
nếu p1 chia 3 dư 1 => p2 = p1 + 6k + 2 chia hết cho 3 => p2 là hợp số (không thỏa gt)
nếu p1 chia 3 dư 2 => p3 = p1 + 12k + 4 chia hết cho 3 => p3 là hợp số (---nt--)
=> p1, p2 , p3 là SNT khi m ≠ 3k + 1
* m = 3k + 2, khi đó 3 số là:
p2 = p1 + d = p1 + 2m = p1 + 6k + 4
p3 = p1 + 2d = p1 + 4m = p1 + 12k + 8
nếu p1 chia 3 dư 1 => p3 = p1 + 12k + 8 chia hết cho 3 => p3 là hợp số (không thỏa gt)
nếu p 1 chia 3 dư 2 => p2 = p1 + 6k + 4 chia hết cho 3 => p2 là hợp số ( không thỏa gt)
=> p1, p2 , p3 là SNT khi m ≠ 3k + 2
vậy để p1, p 2, p 3 đồng thời là 3 SNT thì m = 3k => d = 2m = 6k chia hết cho 6.
3
ta có p,p+1,p+2 là 3 số liên tiếp nên 1 trong 3 số chia hết cho 3.
mà p,p+2 là SNT >3 nên p,p+2 ko chia hết cho 3 và là số lẻ
=>p+1 chia hết cho 3 và p+1 chẵn=>p+1 chia hết cho 6
4
vì p là SNT >3=>p=3k+1 hoặc p=3k+2
với p=3k+1=>p+8=3k+9 chia hết cho 3
với p=3k+2=>p+4=3k+6 ko phải là SNT
vậy p+8 là hợp số
5
vì 8p-1 là SNt nên p>3=>8p ko chia hết cho 3
vì 8p,8p+1,8p-1 là 3 số liên tiếp nên 1 trong 3 số chia hết cho 3.mà 8p,8p-1 là SNT >3=>8p+1 chia hết cho 3 và 8p+1>3
=>8p+1 là hợp số
6.
Ta có: Xét:
+n=0=>n+1=1;n+3=3;n+7=7;n+9=9;n+13=13;n+15=15n+1=1;n+3=3;n+7=7;n+9=9;n+13=13;n+15=15(hợp số,loại)
+n=1
=>n+1=2;n+3=4;n+7=8;n+9=10;n+13=14;n+15=16n+1=2;n+3=4;n+7=8;n+9=10;n+13=14;n+15=16(hợp số,loại)
+n=2
=>n+1=3;n+3=5;n+7=9;n+9=11;n+13=15;n+15=17n+1=3;n+3=5;n+7=9;n+9=11;n+13=15;n+15=17(hợp số,loại)
+n=3
=>n+1=4;n+3=6;n+7=10;n+9=12;n+13=16;n+15=18n+1=4;n+3=6;n+7=10;n+9=12;n+13=16;n+15=18(hợp số,loại)
+n=4
n+1=5;n+3=7;n+7=11;n+9=13;n+13=17;n+15=19n+1=5;n+3=7;n+7=11;n+9=13;n+13=17;n+15=19(SNT,chọn)
Nếu n>4 sẽ có dạng 4k+1;4k+2;4k+3
+n=4k+1
⇔n+3=4k+1+3=4k+4⇔n+3=4k+1+3=4k+4(hợp số,loại)
+n=4k+2
=>n+13=4k+2+13=4k+15n+13=4k+2+13=4k+15(hợp số,loại)
+n=4k+3
=>n+3=4k+3+3=4k+6n+3=4k+3+3=4k+6(hợp số,loại)
⇔n=4
4.vì p là số nguyên tố >3
nên p có dạng 3k+1;3k+2
xét p=3k+1 ta có :p+4=(3k+1)+4=3k+5(thỏa mãn)
xét p=3k+2 ta có: p+4=(3k+2)+4=3k+6 chia hết cho 3(trái với đề bài)
vậy p+8=(3k+1)+8=3k+9 chia hết cho 3
Vậy p+8 là hợp số
1. Gọi số M là số lẻ, Q là số chẵn, nguyên tố cần tìm là P ( P ≠ 2 vì 2 là số nguyên tố chẵn duy nhất, nhỏ nhất nên không thể là tổng)
- P = A + 2 ( M + Q = M )
- P = B - 2 ( M - Q = M )
- A = P - 2; B = P + 2
P + 2; P; P - 2 ⇒ 3 số lẻ liên tiếp.
- P ≠ 1 vì P là số nguyên tố.
- P ≠ 2 vì 2 là số nguyên tố chẵn duy nhất, nhỏ nhất nên không thể là tổng.
- P ≠ 3 vì 3 = A + 2; 3 = 1 + 2 ( 1 không phải là số nguyên tố )
- P = 5 vì A + 2 = 5 = B - 2
3 + 2 = 5 = 7 - 2
⇒ P = 5
Số tn n nhỏ nhất để các phân số : n+7/3; n+8/4; n+9/5; n+10/6; n+11/7 đều tối giản
c. Tìm tất cả các số tự nhiên n sao cho n + 1, n + 3, n + 7, n + 9, n + 13 và n + 15 đều là số nguyên tố
n là số 4
vì 4+1=5 là số nguyên tố
4+3=7 là số nguyên tố
4+7=11 là số nguyên tố
4+9=13 là số nguyên tố
4+13=17 là số nguyên tố
4+15=19 là số nguyên tố.
tk nha
Vì: n + 1; n + 3; n + 7; n + 9; n + 13 và n + 15 đều là số nguyên tố. Suy ra: n phải là số chẵn (2 là số nguyên tố chẵn duy nhất)
Nếu n = 2 thì n + 13 = 15 là hợp số (loại)
Nếu n = 4 thì n + 1 = 5; n + 3 = 7; n + 9 = 11; n + 13 = 17; n + 15 = 19 đều là các số nguyên tố (nhận)
Vậy: Số tự nhiên nhỏ nhất để n + 1; n + 3; n + 7; n + 9; n + 13 và n + 15 đều là số nguyên tố là: n = 4
Câu hỏi của Nguyễn Lịch Tiểu - Toán lớp 6 - Học toán với OnlineMath
Em tham khảo tại link trên nhé.