A=2+2^2+2^3+2^4+...+2^59+2^60
chứng tỏ A chia hết cho 7và 15
cho A 2 2 mũ 2 2 mũ 3 ...... 2 mũ 60chứng minh A chia hết cho 3,A chia hết cho 7 và A chi hết cho 42
\(A=2+2^2+2^3+...+2^{60}\)
\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)\)
\(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{59}\left(1+2\right)\)
\(A=2.3+2^3.3+...+2^{59}.3\)
\(A=3\left(2+2^3+...+2^{59}\right)\)
Vì \(3\left(2+2^3+...+2^{59}\right)⋮3\)
\(\Rightarrow A⋮3\)
\(A=2+2^2+2^3+...+2^{60}\)
\(A=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{58}+2^{59}+2^{60}\right)\)
\(A=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)
\(A=2.7+2^4.7+...+2^{58}.7\)
\(A=7\left(2+2^4+...+2^{58}\right)\)
Vì \(7\left(2+2^4+...+2^{58}\right)⋮7\)
\(\Rightarrow A⋮7\)
Chứng tỏ
Cho A = 2 + 22 + 23 + ........ + 259 + 260
a) A chia hết cho 15
b) A ko chia hết cho 4
Cho A = 2+22+23+24+...+258+259+260. CMR: a) A chia hết cho 3, b) A chia hết cho 7, c) A chia hết cho 15
a) A = 2 + 2^2 + ... + 2^58 + 2^59 + 2^60
A = 2 ( 2 + 1 ) + 2^3 ( 2 + 1 ) + ... + 2^59 ( 2 + 1)
A = 3 .2 + 3.2^3 + ... + 3.2^59
A = 3 ( 2 + 2^3 + ... + 2^59 ) luôn chia hết cho 3
Ta có A = 2+22 + 23 + .....+ 259 + 260
= ( 2+ 22 + 23) +....+ (258 + 259 + 260)
= 2(1+2+4) +....+ 258( 1+2+4)
= 2 .7+24.7 +....+ 258 . 7
= 7( 2+24 + ....+ 258)
=> A chia hết cho 7
Chứng tỏ tỏng S = 2+22+23+24+...+259+260 chia hết cho 15
S=(2+22+23+24)+(25+26+27+28)+...+(257+258+259+260)
S=2(1+2+22+23)+25(1+2+22+23)+...+257(1+2+22+23+24)
S=2.15+25.15+...+257.15
S=15(2+25+...+257) chia hết cho 15
Vậy S chia hết chi 15
tich ủng hộ cái nha!!!
hu!hu! Phan Bá Cường trả lời sau mình mà
a)A=2+2^2+2^3+2^4+...+2^60 chứng tỏ A chia hết cho 3, 7 ,15
b)B=3+3^2+3^3+3^4+...+3^1991 chứng tỏ B chia hết cho 13 và 41
Cho S=2+22+23+24+..........+259+260
Chứng tỏ rằng S chia hết cho 15
S=2+2^2+2^3+2^4+...+2^59+2^60
=(2+2^2+2^3+2^4)+...+(2^57+2^58+2^59+2^60)
=2(1+2+2^2+2^3)+...+2^57(1+2+2^2+2^3)
=(1+2+2^2+2^3)(2+...+2^57)
=15.(2+...+2^57) chia hết cho 15
Bài 4: Tìm chữ số tận cùng của M
M=1+7+7 mu 2+...+7 mu 81
Bài 5: Cho M=1+2+2 mu 2+...+2 mu 206
a) Chứng tỏ: M chia hết cho 7
b) Chứng tỏ: M không chia hết cho 15
c) Tìm x thuộc N,biết:M+1=2
Bài 6:Chứng tỏ:
A=1+3+3 mu 2+...+3 mu 59 chia hết cho 13
B=1+3+3 mu 2+...+3 mu 61 không chia hết cho 13
giải nhanh dùm mình.
rồi minh tích cho.
Bài 4:
Ta có:
M=1+7+72+...+781
M=(1+7+72+73)+(74+75+76+77)+...+(778+779+780+781)
M=(1+7+72+73)+74.(1+7+72+73)+...+778.(1+7+72+73)
M=400+74.400+...+778.400
M=400.(1+74+...+778)
\(\Rightarrow\)M=......0
Vậy chữ số tận cùng của M là chữ số 0
Bài 5:
a)Ta có:
M=1+2+22+...+2206
M=(1+2+22)+(23+24+25)+...+(2204+2205+2206)
M=(1+2+22)+23.(1+2+22)+...+2204.(1+2+22)
M=7+23.7+...+2204.7
M=7.(1+23+...+2204)\(⋮\)7
Vậy M chia hết cho 7
c)Câu này đề có phải là M+1=2x ko?Nếu đúng thì giải như zầy nè:
Ta có:
M=1+2+22+...+2206
2M=2+22+23+...+2207
2M-M=(2+22+23+...+2207)-(1+2+22+...+2206)
M=2+22+23+...+2207-1-2-22-...-2206
\(\Rightarrow\)M=2207-1
M+1=2207-1+1
M+1=2207
Ta có:
M+1=2x
2x=M+1
2x=2207
x=2207:2
x=\(\frac{2^{207}}{2}\)
Bài 6:
Ta có:
A=(1+3+32)+(33+34+35)+...+(357+358+359)
A=(1+3+32)+33.(1+3+32)+...+357.(1+3+32)
A=13+33.13+...+357.13
A=13.(1+33+..+357)\(⋮\)13
Vậy A chia hết cho 13
mk chỉ biết giải dc từng nấy câu thui. thông cảm cho mk nha
A=2+22+23+24+...+259+260
Chứng tỏ rằng A chia hết cho 3
A chia hết cho 7
a) A = 2 + 22 + 23 + 24 + ... + 259 + 260
A = ( 2 + 22 ) + ( 23 + 24 ) + ... + ( 259 + 260 )
A = 2 ( 1 + 2 ) + 23 ( 1 + 2 ) + ... + 259 ( 1 + 2 )
A = 3 ( 2 + 23 + ... + 259 )
A chia hết cho 3 ( đpcm )
b) A = 2 + 22 + 23 + 24 + ... + 259 + 260
A = ( 2 + 22 + 23 ) + ... + ( 258 + 259 + 260 )
A = 2 ( 1 + 2 + 22 ) + ... + 258 ( 1 + 2 + 22 )
A = 7 ( 2 + ... + 258 )
A chia hết cho 7 ( đpcm )
Bài 1: Chứng minh rằng tổng sau chia hết cho 7: A= 2^1 + 2^2 + 2^3 + 2^4 + ... + 2^59 + 2^60
Bài 2: a) Cho A= 999993^1999 - 555557^1997. Chứng minh rằng A chia hết cho 5
b) Chứng tỏ rằng: 1/41 + 1/42 + 1/43 + ... + 1/79 + 1/80 > 7/12
Bài 3: Chứng tỏ rằng: 2x + 3y chia hết cho 17 <=> 9x + 5y chia hết cho 17
A= (21+22+23)+(24+25+26)+...+(258+259+260)
=20(21+22+23)+23(21+22+23)+...+257(21+22+23)
=(21+22+23)(20+23+...+257)
= 14(20+23+...+257) chia hết cho 7
Vậy A chia hết cho 7
gọi 1/41+1/42+1/43+...+1/80=S
ta có :
S>1/60+1/60+1/60+...+1/60
S>1/60 x 40
S>8/12>7/12
Vậy S>7/12
cho mình hỏi nhờ cũng cái đề bài này nhưng chia hết cho 37 làm thế nào