Tìm a,b biết : gợi ý (a,b) là ƯCLN ; [a,b] là BCNN
(a,b).[a,b]=a.b
a.b=360 và [a,b]=60a.b=180 và [a,b]=20(a,b)a.b=30 và [a,b]=6(a,b)
Đố ai làm được và nêu cả cách giải ra nhé
1) Tìm hai số tự nhiên biết rằng tổng của chúng bằng 432 và ƯCLN của chúng bằng 36
Gợi ý : gọi : hai số tự nhiên cần tìm là : a và b
theo đề cho ta có : a + b = 432 và ƯCLN ( a, b ) = 36
Trình bày đấy
là siêu trộm mà sao ko trộm kiến thức đi mà cứ phải đi hỏi thế
Tìm a,b biết : gợi ý (a,b) là ƯCLN ; [a,b] là BCNN
(a,b).[a,b]=a.b
a.b=360 và [a,b]=60a.b=180 và [a,b]=20(a,b)a.b=30 và [a,b]=6(a,b)
Đố ai làm được và nêu cả cách giải ra nhé
a)Tìm a;b biết a+b = 162 và ƯCLN ( a,b ) = 18
b)Tìm a;b biết a.b = 8748 và ƯCLN ( a,b ) =27
c) Tìm hai số tự nhiên nhỏ hơn 200 biết hiệu của chúng là 90 và ƯCLN của chúng là 15
GIÚP MÌNH VỚI !
a) tìm hai số tự nhiên biết tổng của chúng là 162 và ƯCLN của chúng là 18
b) tìm hai số tự nhiên a,b biết rằng BCNN (a,b) = 300 ; ƯCLN (a,b) = 15
c) tìm hai số tự nhiên a và b biết tích của chúng bằng 2940 và BCNN của chúng là 210
a) ƯCLN của hai số là 45 . số lớn là 270 . tìm số ngỏ
b) ƯCLN của hai số tự nhiên bằng 4 số nhỏ bằng 8 . tìm số lớn
UKM
^6^7g^7*(KHV C GTGFCCGttedx
a) tìm hai số tự nhiên biết tổng của chúng là 162 và ƯCLN của chúng là 18
b) tìm hai số tự nhiên a,b biết rằng BCNN (a,b) = 300 ; ƯCLN (a,b) = 15
c) tìm hai số tự nhiên a và b biết tích của chúng bằng 2940 và BCNN của chúng là 210
a) ƯCLN của hai số là 45 . số lớn là 270 . tìm số ngỏ
b) ƯCLN của hai số tự nhiên bằng 4 số nhỏ bằng 8 . tìm số lớn
a) tìm hai số tự nhiên biết tổng của chúng là 162 và ƯCLN của chúng là 18
b) tìm hai số tự nhiên a,b biết rằng BCNN (a,b) = 300 ; ƯCLN (a,b) = 15
c) tìm hai số tự nhiên a và b biết tích của chúng bằng 2940 và BCNN của chúng là 210
a) ƯCLN của hai số là 45 . số lớn là 270 . tìm số ngỏ
b) ƯCLN của hai số tự nhiên bằng 4 số nhỏ bằng 8 . tìm số lớn
a) goi hai so la a ; b va a >b
vi UCLN(a,b)=18=>a=18k ; b=18q (trong do UCLN (k,q)=1 va k>q)
=>a+b=162
18k+18q =162
18(k+q)=162
k+q=9
ta co bang sau | |||||||||||||||||||||||
vay ........... | |||||||||||||||||||||||
21453
52542000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 | 542454550212.100000000000000000000000000000000000000000000000000000000000000000000000000000 |
biết ƯCLN của a và b là 95, a>b. Tìm ƯCLN của a+b và a-b
Vì ƯCLN(a,b) = 10, suy ra : a = 10x ; b = 10y
(với x < y và ƯCLN(x,y) = 1 )
Ta có : a.b = 10x . 10y = 100xy (1)
Mặt khác: a.b = ƯCLN(a,b). BCNN(a,b)
a.b = 10 . 900 = 9000 (2)
Từ (1) và (2), suy ra: xy = 90
Ta có các trường hợp sau:
x | 1 | 2 | 3 | 5 | 9 |
y | 90 | 45 | 30 | 18 | 10 |
Từ đó suy ra a và b có các trường hợp sau:
a | 10 | 20 | 30 | 50 | 90 |
y | 900 | 450 | 300 | 180 | 100 |
1. ƯCLN của hai số là 45. Số lớn là 270, tìm số bé.
2. Tìm hai số biết tổng của chúng là 162 và ƯCLN của chúng là 18.
3. Tìm hai số tự nhiên a và b, biết rằng BCNN(a,b) = 300; ƯCLN (a,b) = 15.
bài 1:
Gọi 2 số đó là a và 270 với a < 270
Ta có ƯCLN(a ; 270) = 45
=> a = 45m ; 270 = 45 . 6 (m ∈ N)
Mà ƯCLN(a ; 270) = 45 => ƯCLN(m ; 6) = 1
Do a < 270 nên m < 6.
Vậy m ∈ {1 ; 5}
Khi đó a ∈ {45 ; 225}
Vậy số bé là 45 hoặc 225
Bài 2:
Tìm 2 số có tổng là 162 và UCLN là 18.
x+y=162
x=18m; y=18n => m+n=9 và m, n nguyên tố cùng nhau => xảy ra 3 trường hợp
1. m=4; n=5 hoặc ngược lại
=> x=18*4=72 và y=18*5=90 hoặc ngược lại
2. m=1 và n=8 hoặc ngược lại
=> x=18 và y=144 hoặc ngược lại
3. m=2 và n=7 hoặc ngược lại
=> x=36 và y=126 hoặc ngược lại
Bài 3:
Vì BCNN(A,B)=300;ƯCLN(A,B)=15=> AB= 4500
ta có: ƯCLN(A,B)= 15=> A=15k;b=15q với ƯCLN(k;q)=1
=> 15k x 15q = 4500
=> 225kq=4500
=> kq= 20
Mà ƯCLN(k;q)=1 => ta có bảng:
k | 1 | 4 | 5 | 20 |
---|---|---|---|---|
A | 15 | 60 | 75 | 300 |
q | 20 | 5 | 4 | 1 |
B | 300 | 75 | 60 | 15 |
Mà theo đề bài: A+15=B=> A=60; B=75
tìm 2 số a,b a>b biết a.b=300 và ucln[a,b]=5
bài 1:
Gọi 2 số đó là a và 270 với a < 270
Ta có ƯCLN(a ; 270) = 45
=> a = 45m ; 270 = 45 . 6 (m ∈ N)
Mà ƯCLN(a ; 270) = 45 => ƯCLN(m ; 6) = 1
Do a < 270 nên m < 6.
Vậy m ∈ {1 ; 5}
Khi đó a ∈ {45 ; 225}
Vậy số bé là 45 hoặc 225
Bài 2:
Tìm 2 số có tổng là 162 và UCLN là 18.
x+y=162x=18m; y=18n => m+n=9 và m, n nguyên tố cùng nhau => xảy ra 3 trường hợp1. m=4; n=5 hoặc ngược lại=> x=18*4=72 và y=18*5=90 hoặc ngược lại2. m=1 và n=8 hoặc ngược lại=> x=18 và y=144 hoặc ngược lại3. m=2 và n=7 hoặc ngược lại=> x=36 và y=126 hoặc ngược lại
Bài 3:
Vì BCNN(A,B)=300;ƯCLN(A,B)=15=> AB= 4500
ta có: ƯCLN(A,B)= 15=> A=15k;b=15q với ƯCLN(k;q)=1
=> 15k x 15q = 4500
=> 225kq=4500
=> kq= 20
Mà ƯCLN(k;q)=1 => ta có bảng:
k | 1 | 4 | 5 | 20 |
---|---|---|---|---|
A | 15 | 60 | 75 | 300 |
q | 20 | 5 | 4 | 1 |
B | 300 | 75 | 60 | 15 |
Mà theo đề bài: A+15=B=> A=60; B=75
Tìm ab biết nếu láy ab:(a+b)=7 dư 9
gợi ý a+b lớn hơn 9