Câu 10: Cho tam giác ABC có diện tích 12cm2. Điểm M thuộc cạnh BC sao cho BM = Điểm N thuộc cạnh AC sao cho AN = AC. Diện tích tứ giác ABMN là: …..
a/ 8cm2 b/ 9cm2 c/ cm2 d/ cm2
Cho tam giác ABC có diện tích 120 cm2. M là điểm thuộc cạnh BC sao cho BM= MC, điểm N thuộc cạnh AC sao cho AN=1/3 AC. Gọi giao điểm của AM và BN là Q .
a) Tính diện tích tam giác ABN, tam giác BMN.
b) Chứng minh AQ=QM.
Bài 9 (1 điểm) Cho tam giác ABC có M là điểm thuộc cạnh BC sao cho BC = 3 x MC và N là điểm thuộc cạnh AC sao cho AC = 4 x AN. Kéo dài MN cắt AB kéo dài tại P. Tính tỉ số diện tích tam giác PAN và tam giác ABC.
Bài 10 (1 điểm) Cho tam giác ABC có M là trung điểm AB. N là điểm thuộc cạnh AC sao cho AC = 3 x NC. Gọi P là trung điểm AN, Q là trung điểm MN. Tính diện tích tam giác PQN biết diện tích tam giác ABC là 180cm2.
1 điểm
giúp mik nhé, mik đang cần gấp
Cho tam giác ABC có diện tích là 60 cm2. Trên cạnh BC lấy điểm M sao cho BM = CM , trên cạnh AC lấy điểm N sao cho AN = 1/3 AC. Tính diện tích hình bình hành ABMN
Bài giải
Vì BM = CM và M nằm trên đoạn BC nên BM = CM = \(\frac{1}{2}\) BC.
Ta thấy: SABM = SAMC = \(\frac{1}{2}\) SABC vì chúng có chung chiều cao là chiều cao của tam giác ABC và có đáy BM = CM = \(\frac{1}{2}\) BC.
Do đó SABM = SAMC = \(\frac{1}{2}\) × 60 = 30 (cm2)
Ta lại thấy: SAMN = \(\frac{1}{3}\) SAMC vì chúng có chung chiều cao kẻ từ đỉnh M xuống đoạn AC và có đáy AN = \(\frac{1}{3}\) AC.
Do đó SAMN = \(\frac{1}{3}\) × 30 = 10 (cm2)
Dễ thấy SABMN = SABM + SAMN = 30 + 10 = 40 (cm2)
Vậy diện tích hình bình hành ABMN là 40 cm2
Bạn tự vẽ hình được rồi nha, mình không biết vẽ trên trang này kiểu nào)
Bài giải
Vì BM = CM và M nằm trên đoạn BC nên BM = CM = $\frac{1}{2}$12 BC.
Ta thấy: SABM = SAMC =\(\frac{1}{2}\) SABC vì chúng có chung chiều cao là chiều cao của tam giác ABC và có đáy BM = CM = \(\frac{1}{2}\) BC.
Do đó SABM = SAMC = \(\frac{1}{2}\) × 60 = 30 (cm2)
Ta lại thấy: SAMN = \(\frac{1}{3}\) SAMC vì chúng có chung chiều cao kẻ từ đỉnh M xuống đoạn AC và có đáy AN = \(\frac{1}{3}\) AC.
Do đó SAMN =\(\frac{1}{3}\) × 30 = 10 (cm2)
Dễ thấy SABMN = SABM + SAMN = 30 + 10 = 40 (cm2)
Vậy diện tích hình bình hành ABMN là 40 cm2
Viết thêm câu này nữa để đẩy câu kia xuống cho đỡ tốn diện tích.
Cho tam giác ABC. Trên cạnh AB lấy điểm M sao cho BM = 2/3MA, lấy điểm N trên cạnh AC sao cho AN = 2NC. Tính diện tích tam giác ABC, biết diện tích tam giác AMN là 9cm2 .
Cho tam giác abc. Điểm m trên cạnh bc sao cho bm=2.mc. Điểm N trên cạnh AC sao cho AN=3.NC
a) Tính diện tích ABMN biết diện tích tam giác abc= 60 cm vuông
b) So sánh diện tích tam giác abm với diện tích tam giác kmc ( k là giao điểm của ab với mn kéo dài)
Tam giác ABC có diện tích là 120 cm vuông . M là 1 điểm thuộc cạnh BC sao cho BM = MC , điểm N thuộc cạnh AC sao cho AN = 1/3 AC .Gọi giao điểm của AM và BN là Q.
a, Tính diện tích tam giác ABN , BMN.
b, Chứng minh AQ = QM.
a)
* Ta thấy: Hai tam giác ABN và ABC có chung đường cao hạ từ điểm B xuống đoạn thẳng AC và có đáy AN = 1/3 AC
=> SABN = 1/3 SABC
=> SABN = 1/3 * 120 cm2
=> SABN = 40 cm2
* Theo hình vẽ, ta thấy:
SBCN = SABC - SABN
=> SBCN = 120 cm2 - 40 cm2
=> SBCN = 80 cm2
Mà hai tam giác BMN và BCN có chung chiều cao hạ từ điểm N xuống đoạn thẳng BC và có đáy BM = MC => 2 BM = MC + BM => BM = 1/2 BC
=> SBMN = 1/2 SBCN
=> SBMN = 1/2 * 80 cm2
=> SBMN = 40 cm2
b) Nhìn vào hình vẽ, ta thấy:
Hai tam giác ABQ và ABN có chung đường cao hạ từ điểm A xuống đoạn thẳng BN nên: SABQ / SABN = BQ / BN
Hai tam giác BMQ và BMN có chung đường cao hạ từ điểm M xuống đoạn thẳng BN nên: SBMQ / SBMN = BQ / BN
Từ đây suy ra: SABQ / SABN = SBMQ / SBMN
Mà theo phần a), SABN = 40 cm2 , SBMN = 40 cm2 => SABN = SBMN
=> SABQ = SBMQ
Mà hai tam giác ABQ và BMQ có chung đường cao hạ từ điểm B xuống đoạn thẳng AM => AQ = QM ( đpcm )
Cho tam giác ABC vuông ở A, có cạnh AB=40cm, AC=60cm. M là 1 điểm thuộc cạnh AB sao cho AM=MB, N là 1 điểm thuộc cạnh BC sao cho BN=NC.
a, Tính diện tích các tam giác BMC, ANB.
b, Tính diện tích tứ giác AMNC.
c, Gọi O là điểm cắt nhau của 2 đoạn thẳng AN và CM. So sánh diện tích các tam giác AMO và CNO
\(S_{BMC_{ }_{ }}=\frac{BM.CA}{2}=\frac{20.60}{2}=600cm^2\)
Ta có MN là đường tb của tam giác ABC => MN//AC và MN.2 = AC
=> MN là đường cao của AB ,MN=30 cm
=> SABN=30.40:2=600cm2
b)SAMNC=(MN+AC) .AM:2=(30+60).20:2=900cm2
c)SMAC=MA.AC:2
SANC=CA.MA:2
=> SMAC=SANC=>SAMO=SCON
Cho tam giác ABC có diện tích là 100cm2 , điểm I,E thuộc cạnh AB sao cho AI=BE=AB/4.Điểm M,N thuộc cạnh AC sao cho AM=CN=AC/5.Tính diện tích của hình tứ giác IEMN
Cho tam giác ABC có diện tích 12 c m 2 . Gọi N là trung điểm của BC, M trên AC sao cho AM = 1 3 AC, AN cắt BM tại O
Tính diện tích tam giác AOM
A. 4 c m 2
B. 3 c m 2
C. 2 c m 2
D. 1 c m 2
Hai tam giác AOM và ABM có chung đường cao hạ từ A
nên = S A O M S A B M = O M B M = 1 4
=> SAOM = 1 4 SABM
Hai tam giác ABM và ABC có chung đường cao hạ từ B
nên S A B M S A B C = A M A C = 1 3
=> SABM = 1 3 SABC
Vậy SAOM = 1 4 . 1 3 .12 = 1 (cm2)
Đáp án cần chọn là: D