Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Ngọc Diệp
Xem chi tiết
 Đào Xuân Thế Anh
26 tháng 1 2021 lúc 21:17

1+2+3+4+5+6+7+8+9=133456 hi hi

Khách vãng lai đã xóa
Phí Mạnh Huy
7 tháng 11 2021 lúc 21:41

đào xuân anh sao mày gi sai hả

Khách vãng lai đã xóa
Đỗ Hương Chi
26 tháng 11 2021 lúc 19:30

???????????????????
 

Khách vãng lai đã xóa
duong nguyen
Xem chi tiết
Incursion_03
5 tháng 12 2018 lúc 22:23

*Nếu n chẵn thì n(n+13) chẵn

=> n(n+13) chia hết cho 2

*Nếu n lẻ => n+13 chẵn

=>n(n+13) chẵn

=> n(n+13) chia hết cho 2

Vậy /............

Trương Minh Đại
20 tháng 10 2019 lúc 10:56

chia hết cho 2 . mk hiểu nhưng ko biết cách giải OK

Khách vãng lai đã xóa
Vũ Hương Lan
Xem chi tiết
Bùi Đức Lôc
24 tháng 10 2017 lúc 17:26

Ta xét 2 trường hợp:

TH1: n là số chẵn

=> n chia hết cho 2

=> n. (n+13) chia hết cho 2

TH2: n là số lẻ

=> n + 13 là số chẵn ( lẻ + lẻ = chẵn)

=> n. (n + 13) chia hết cho 2

Từ 2 trường hợp trên thì ta kết luận n. (n + 13) chia hết  cho 2 với mọi số tự nhiên n.

Ad
14 tháng 10 2018 lúc 9:38

Với mọi số tự nhiên \(n\) thì \(n\) có dạng \(2k\) hoặc \(2k+1\)

+ Nếu \(n=2k\Rightarrow n⋮2\Rightarrow n\left(n+13\right)⋮2\)

+ Nếu \(n=2k+1\Rightarrow x+13=\left(2k+1\right)+13=2k+14=2\left(k+7\right)⋮2\)

\(\Rightarrow n+13⋮2\Rightarrow n\left(n+13\right)⋮2\)

Vậy mọi số tự nhiên \(n\)thì \(n\left(n+13\right)⋮2\)

pham quoc hao
Xem chi tiết
Minh Hiền
3 tháng 12 2015 lúc 7:37

+) Với n chẵn : n có dạng 2k

=> n.(n+13)=2k.(2k+13) chia hết cho 2

+) Với n lẻ: n có dạng 2k+1

=> n.(n+13)=(2k+1).(2k+1+13)=(2k+1).(2k+14)=(2k+1).2.(k+7) chia hết cho 2

Vậy n.(n+13) chia hết cho 2 với mọi n.

Đoàn Như ý
Xem chi tiết
to minh anh
Xem chi tiết
Nguyễn Hùng Sơn
23 tháng 10 2016 lúc 19:16

nếu n là lẻ thì n+13 là chẵn mà lẻ nhân chẵn bằng chẵn------------>n chia hết cho 2

nếu n là chẵn thì n+13 là lẻ mà chẵn nhân lẻ bằng chẵn---------------->n chia hết cho 2

---------->n*(n+13)chia hết cho 2 với mọi số tự nhiên n

Đỗ Lê Tú Linh
23 tháng 10 2016 lúc 19:20

Đặt A=n(n+13)

Nếu n=2k(kEN) thì A=2k(2k+13)=4k2+26k

Vì 4 chia hết cho 2 nên 4k^2 chia hết cho 2

Vì 26 chia hết cho 2 nên 26k chia hết cho 2

=> 4k^2+26k chia hết cho 2 hay A chia hết cho 2

Do đó, với n=2k thì A chia hết cho 2

Nếu n=2k+1(kEN) thì A=(2k+1)(2k+1+13)=(2k+1)(2k+14)=2k(2k+14)+(2k+14)=4k2+28k+2k+14=4k2+30k+14

Vì 4 chia hết cho 2 nên 4k^2 chia hết cho 2

Vì 30 chia hết cho 2 nên 30k chia hết cho 2

có 14 chia hết cho 2

=> 4k^2+30k+14 chia hết cho 2 hay A chia hết cho 2

Do đó, với n=2k+1(kEN) thì A cũng chia hết cho 2

Vậy n(n+13) chia hết cho 2 với mọi số tự nhiên n

tran nguyen
1 tháng 11 2017 lúc 19:49
ta có chẵn+lẻ=lẻ lẻ+lẻ=chẵn chẵn+chẵn=chẵn 13 là số lẻ nên N là số lẻ
Nguyễn Xuân Trường
Xem chi tiết
Hà Nhi Hồ
Xem chi tiết
Đỗ Lê Tú Linh
12 tháng 11 2015 lúc 21:16

Nếu n=2k(kEN)

thì n(n+13)=2k(2k+13)=4k2+26k(chia hết cho 2 vì các số hạng đều chia hết cho 2)

Nếu n=2k+1(kEN)

thì n(n+13)=(2k+1)(2k+1+13)=(2k+1)(2k+14)=2k(2k+14)+2k+14=4k2+28k+2k+14=4k2+30k+14(chia hết cho 2 vì các số hạng đều chia hết cho 2

Vậy với mọi nEN thì n(n+13) chia hết cho 2

Nguyễn Việt Hoàng
Xem chi tiết
nguyễn khắc bảo
30 tháng 10 2021 lúc 22:27

Ta có  vì n\(\in\)N

+) TH1 :n là số lẻ=>n+13\(⋮\)2=>n.(n+13)\(⋮\)2

+)TH2 :n là số chẵn =>n\(⋮\)2=>n.(n+13)\(⋮\)2

vậy n.(n+13)\(⋮\)2 với \(\forall\)n\(\in\)N

Khách vãng lai đã xóa