tìm gtnn của BT A=|2Y+7.4|+6.2+|-X+2.1|
Giá trị nhỏ nhất của
|2y=7.4|=6.2+|-x=2.1|
giá trị nhỏ nhất cua |2y+7.4|+6.2+|-x+2.1|
\(\left|2y+28\right|+12+\left|-x+2\right|\)
ta có:
\(\hept{\begin{cases}\left|2y+28\right|\ge0\\\left|-x+2\right|\ge0\end{cases}}\Rightarrow\left|2y+28\right|+12+\left|-x+2\right|\ge12\)
dâu = xảy ra khi \(\hept{\begin{cases}\left|2y+28\right|=0\\\left|-x+2\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}y=14\\x=2\end{cases}}\)
Vậy GTNN của |2y+7.4|+6.2+|-x+2.1| là 12 khi và chỉ khi x=2, y=14
Tìm giá trị nhỏ nhất của biểu thức:
\(|2y+7.4|+6.2+|-x+2.1|\)
Tìm giá trị lớn nhất của biểu thức:
\(-5\left\{\left(a-1\right)^2-6.5+|b+1\right\}\)
tìm GTNN của bt:
A= x2-xy+y2-2x-2y
A=x2-xy +y2-2x -2y suy ra 2. A = 2 x2-2xy +2y2-4x -4y = (x2-2xy +y2 ) + (x2-4x + 4) +( y2-4y+ 4) -8
2A = (x -y)2 + (x -2)2 + (y -2)2 -8 \(\ge\)-8 nên A \(\ge\)-4
dấu "=" xảy ra khi và chỉ khi x -y =0; x -2 =0 và y -2 = 0 suy ra x =y =2
Vậy GTNN của A là -4 tại x =y = 2
4A = 4x^2-4xy+4y^4-8x-8y
= [ (4x^2-4xy+y^2)-2.(2x-y).2+4 ] + (3y^2-4y+4/3) - 16/3
= (2x-y-2)^2 + 3.(y-2/3)^2 - 16/3 >= -16/3 => A >= -4/3
Dấu "=" xảy ra <=> 2x-y-2=0 và y-2/3 = 0
<=> x=4/3 và y=2/3
Vậy Min của A = -4/3 <=> x = 4/3 và y = 2/3
k mk nha
Tìm GTNN của các bt sau:
a/ | x- y | + | x + 2y - 6 | +5
b / | x-1 | + | x-2 | + | x-3 | + ....+| x- 100 |
Tìm GTNN của các bt sau:
a/ | x- y | + | x + 2y - 6 | +5
b / | x-1 | + | x-2 | + | x-3 | + ....+| x- 100 |
Tìm GTNN của các bt sau:
a/ | x- y | + | x + 2y - 6 | +5
b / | x-1 | + | x-2 | + | x-3 | + ....+| x- 100 |
Tìm GTNN của các bt sau:
a/ | x- y | + | x + 2y - 6 | +5
b / | x-1 | + | x-2 | + | x-3 | + ....+| x- 100 |
Tìm GTNN của các BT sau :
A = | 2x + 8 | + 6
B = | 2y+ 4 | + 7 + | 4x + 3 |
C = x2 + 2x + 5
\(A=\left|2x+8\right|+6\ge6\Rightarrow Min_A=6\)
\(B=\left|2y+4\right|+7+\left|4x+3\right|\ge7\Rightarrow Min_B=7\)
\(C=x^2+2x+5=\left(x+1\right)^2+4\ge4\Rightarrow Min_C=4\)
a) Vì |2x+8| lớn hơn hoặc bằng 0 nên GTNN của A=6
b)Vì |2y+4|,|4x+3| lớn hơn hoặc bằng 0 nên GTNN của B=7
c)Ta có: x^2+2x+5=x.(x+2)+5
Nếu x<-2 thì x.(x+2)>0
Nếu x>2 thì x.(x+2)>0
nên GTNN của C=5