so sanh : 1/2 + 1/2^2 + 1/2^3 + 1/2^2011 voi 1 - 1/2^2010
So sanh A voi 1:
A=1/2*2 + 1/3*3 + 1/4*4 + .....+1/2011*2011
So sanh B voi 3/4:
B=1/2*2 + 1/3*3 +1/4*4 + ......+1/2011*2011
(1/2^2)+(1/3^2)+(1/4^2)+....(1/2011^2). So sanh tong sau voi 1
đật tông này là A
suy ra A<1/1.2+1/2.3+1/3.4+...+1/2010.2011
Ta có: 1/1.2+1/2.3+1/3.4+...+1/2010.2011=1-1/2+1/2-1/3+1/3-1/4+...+1/2010-1/2011
=1-1/2011=2010/2011
Vì 2010/2011<1suy ra A<1 hay 1/2^2+1/3^2+...+1/2011^2
So sanh :2009^2009+1/2009^2010+1 va 2009^2010-2/2009^2011-2
So sanh : .A=2^0+2^1+2^2+2^3+...+2^2010 va` B=2^2011-1.
Có A=20+21+22+23+24+.....+22010
Nên 2A = 2 (20+21+22+23+24+.....+22010 )
= 21+22+23+24+.....+22011 + 22011
=>A = 2A - A = 22011 - 20
= 22011 - 1
= B
Vậy A = B
so sanh: A=2009^2009+1/2009^2010+1 và B=2009^2010-2/2009^2011-2
so sanh
1/3+1/3^2+1(3^3)+...+1/3^2011+1/3^2012 voi 1/2
Đặt \(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+.....+\frac{1}{3^{2012}}\)
\(\Rightarrow3A=1+\frac{1}{3}+\frac{1}{3^2}+......+\frac{1}{3^{2011}}\)
\(\Rightarrow3A-A=\left(1+\frac{1}{3}+\frac{1}{3^2}+......+\frac{1}{3^{2011}}\right)\)\(-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+.....+\frac{1}{3^{2012}}\right)\)
\(\Rightarrow2A=1-\frac{1}{3^{2012}}\)
\(\Rightarrow A=\frac{1-\frac{1}{3^{2012}}}{2}\)
Vì \(1-\frac{1}{3^{2012}}< 1\Rightarrow A< \frac{1}{2}\)
cho S= 2/(2012+1)+2^2/(2012^2+1)+2^3/(2012^2^2+1)+.....+2^(n+1)/(2012^2^n+1)+....+2^2013/(2012^2^2012+1).
So sanh S voi 2/2011
các bạn giải toán nhanh dùm mình với.mình cần gấp
giup to voi moi nguoi
Thuc hien so sanh: A=2011^2010+1/2011^2011+1 voi B=2011^2011+1/2011^2012+1
Mới học lớp 5 chưa biết bài lớp 6 .
Tha lỗi
So sanh A va b
A=1+2+22+23+...+22010
B=22011-1
\(A=1+2+2^2+2^3+...+2^{2010}\)
\(2A=2.\left(1+2+2^2+2^3+...+2^{2010}\right)\)
\(2A=2+2^2+2^3+2^4+...+2^{2011}\)
\(A=2A-A=\left(2+2^2+2^3+2^4+..+2^{2011}\right)-\left(1+2+2^2+2^3+..+2^{2010}\right)\)
\(A=2^{2011}-1\)
Vì \(A=2^{2011}-1;B=2^{2011}-1\Rightarrow A=B\)
A= 1+2+22+23+...+22010
2A=2 (2+22+23+...+22010)
2A=22+23+24+...+22011
2A-A= 22011-1
A= 22011-1
Ta có: 22011-1=22011-1
\(\Rightarrow\)...=...Còn lại