Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Hồng Quyên
Xem chi tiết
EnderCraft Gaming
Xem chi tiết
holicuoi
Xem chi tiết
Trần Thị Loan
15 tháng 6 2015 lúc 10:13

=> \(\frac{4}{1.3}.\frac{9}{2.4}...\frac{n^2}{\left(n-1\right)\left(n+1\right)}=\frac{2015}{1008}\)

<=> \(\frac{2^2.3^2...n^2}{1.3.2.4....\left(n-1\right).\left(n+1\right)}=\frac{2015}{1008}\)

<=> \(\frac{\left(2.3.4....n\right).\left(2.3.4...n\right)}{\left(1.2.3...\left(n-1\right)\right).\left(3.4.5...\left(n+1\right)\right)}=\frac{2015}{1008}\)

<=> \(\frac{n.2}{n+1}=\frac{2015}{1008}\)

=> 1008.2n = 2015.(n+1)

<=> 2016n = 2015n + 2015

<=> n = 2015

*) Bạn hỏi câu này một lần rồi!!!

holicuoi
15 tháng 6 2015 lúc 10:14

nhung hinh nhu ban lam sai de roi thi phai

 

holicuoi
Xem chi tiết
Trần Thị Loan
11 tháng 6 2015 lúc 16:02

<=>  \(\frac{4}{1.3}.\frac{9}{2.4}...\frac{n^2}{\left(n-1\right)\left(n+1\right)}=\frac{2015}{1008}\)

<=> \(\frac{\left(2.3.4....n\right)^2}{\left(1.2.3...\left(n-1\right)\right).\left(3.4...\left(n+1\right)\right)}=\frac{2015}{1008}\)

<=> \(\frac{\left(2.3.4....n\right).\left(2.3.4....n\right)}{\left(1.2.3...\left(n-1\right)\right).\left(3.4...\left(n+1\right)\right)}=\frac{2015}{1008}\)

<=> \(\frac{n.2}{n+1}=\frac{2015}{1008}\)

<=> 2n.1008 = 2015.(n+1)

<=> 2016n = 2015n + 2015 

<=> n = 2015

Cố lên Tân
11 tháng 6 2015 lúc 16:01

\(\left(1+\frac{1}{1.3}\right).\left(1+\frac{1}{2.4}\right)...\left(1+\frac{1}{\left(n-1\right)\left(n+1\right)}\right)=1\frac{1007}{1008}=\left(1+\frac{1}{1.3}+\frac{1}{2.4}\right)=2.185897436\)

Ice Wings
Xem chi tiết
Kurosaki Akatsu
28 tháng 12 2016 lúc 15:49

Cậu có thể vào đây tham khảo : http://h.vn/hoi-dap/question/119685.html

Đặng Trần Bảo Ngọc
9 tháng 1 2022 lúc 10:14

chịu thôi bạn ạ ko hiểu gì hết 

Khách vãng lai đã xóa
holicuoi
Xem chi tiết
Trần Thị Loan
15 tháng 6 2015 lúc 11:01

bạn kiểm tra lại đề nhé! vì số hạng tổng quát chẳng liên quan gì đến số hạng đầu

Có thể đề đúng là: \(\left(1+\frac{1}{1.3}\right)\left(1+\frac{1}{2.4}\right)....\left(1+\frac{1}{\left(n-1\right)\left(n+1\right)}\right)=1\frac{1007}{1008}\)

nguyen van nam
Xem chi tiết
Huỳnh Nguyễn Huyền Anh
Xem chi tiết
O Lop U
12 tháng 12 2017 lúc 20:02

128:[n-3]^3=2

[n-3]^3=128:2=64=4^3

n-3=4

n=7

Vay n=7

Bui Quoc Huy
Xem chi tiết