Tìm n biết:
\(\left(\frac{1}{0.125}\right)^n=128\)
Tìm tất cả các số nguyên n biết :
a, \(\frac{1}{9}=27^n=3^n\)
b, \(2^{-1}\times2^n+4\times2^n=9\times2^5\)
c, \(\left(\frac{4}{9}\right)^n=\left(\frac{3}{2}\right)^{-5}\)
d, \(\left(\frac{0}{0,125}\right)^n=128\)
Tìm n thuộc N biết \(\left(1+\frac{1}{3}\right)\left(1+\frac{1}{8}\right)\left(1+\frac{1}{15}\right)...\left(1+\frac{1}{n\left(n+2\right)}\right)=\frac{4032}{2017}\)
Tìm n biết \(\left(1+\frac{1}{1.3}\right)\left(1+\frac{1}{2.4}\right)...\left(1+\frac{1}{\left(n-1\right)\left(n+1\right)}\right)=1\frac{1007}{1008}\)
=> \(\frac{4}{1.3}.\frac{9}{2.4}...\frac{n^2}{\left(n-1\right)\left(n+1\right)}=\frac{2015}{1008}\)
<=> \(\frac{2^2.3^2...n^2}{1.3.2.4....\left(n-1\right).\left(n+1\right)}=\frac{2015}{1008}\)
<=> \(\frac{\left(2.3.4....n\right).\left(2.3.4...n\right)}{\left(1.2.3...\left(n-1\right)\right).\left(3.4.5...\left(n+1\right)\right)}=\frac{2015}{1008}\)
<=> \(\frac{n.2}{n+1}=\frac{2015}{1008}\)
=> 1008.2n = 2015.(n+1)
<=> 2016n = 2015n + 2015
<=> n = 2015
*) Bạn hỏi câu này một lần rồi!!!
Tìm n biết: \(\left(1+\frac{1}{1.3}\right).\left(1+\frac{1}{2.4}\right)...\left(1+\frac{1}{\left(n-1\right)\left(n+1\right)}\right)=1\frac{1007}{1008}\)
<=> \(\frac{4}{1.3}.\frac{9}{2.4}...\frac{n^2}{\left(n-1\right)\left(n+1\right)}=\frac{2015}{1008}\)
<=> \(\frac{\left(2.3.4....n\right)^2}{\left(1.2.3...\left(n-1\right)\right).\left(3.4...\left(n+1\right)\right)}=\frac{2015}{1008}\)
<=> \(\frac{\left(2.3.4....n\right).\left(2.3.4....n\right)}{\left(1.2.3...\left(n-1\right)\right).\left(3.4...\left(n+1\right)\right)}=\frac{2015}{1008}\)
<=> \(\frac{n.2}{n+1}=\frac{2015}{1008}\)
<=> 2n.1008 = 2015.(n+1)
<=> 2016n = 2015n + 2015
<=> n = 2015
\(\left(1+\frac{1}{1.3}\right).\left(1+\frac{1}{2.4}\right)...\left(1+\frac{1}{\left(n-1\right)\left(n+1\right)}\right)=1\frac{1007}{1008}=\left(1+\frac{1}{1.3}+\frac{1}{2.4}\right)=2.185897436\)
Tìm n biết:
\(\frac{1}{2}\left(1+\frac{1}{1.3}\right)\left(1+\frac{1}{2.4}\right)\left(1+\frac{1}{3.5}\right)...\left(1+\frac{1}{n\left(n+2\right)}\right)=\frac{2013}{2014}\)
Với \(n\in\)N*
Cậu có thể vào đây tham khảo : http://h.vn/hoi-dap/question/119685.html
chịu thôi bạn ạ ko hiểu gì hết
Tìm n biết : \(\left(1+\frac{1}{1.3}\right)\left(1+\frac{1}{2.4}\right)...\left(1+\frac{1}{1.\left(n+1\right)}\right)=1\frac{1007}{1008}\)
bạn kiểm tra lại đề nhé! vì số hạng tổng quát chẳng liên quan gì đến số hạng đầu
Có thể đề đúng là: \(\left(1+\frac{1}{1.3}\right)\left(1+\frac{1}{2.4}\right)....\left(1+\frac{1}{\left(n-1\right)\left(n+1\right)}\right)=1\frac{1007}{1008}\)
Tìm n thuộc N, biết: \(\frac{1.3.5...\left(2n-1\right)}{\left(n+1\right)\left(n+2\right)...2n}\frac{1}{2^n}\)
Tìm n, biết:
128: \(\left(n-3\right)^3\)=2
128:[n-3]^3=2
[n-3]^3=128:2=64=4^3
n-3=4
n=7
Vay n=7
Tìm n, biết:
\(\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+...+\frac{1}{n\cdot\left(n+1\right)\cdot\left(n+2\right)}>0,24995\)