Chứng minh
8*7-2*19 chia hết cho 14
Chứng Minh:
(24^1917 + 14^1917) chia hết cho 19
(2^9 + 2^99) chia hết cho 200
(2222^5555 + 5555^2222) chia hết cho 7
24^1917 + 14^1917
=(24+14) (lương liên hợp)
=38(lương liên hợp)
Chia hết cho 19
a có:
A= 2^9 +2^99=2^2(2^7 + 2^97)=4((2^7 + 2^97) đồng dư 0 (mod 4).
2^5 = 32 đồng 7 (mod 25)
=> 2^10 đồng dư 7^2 (mod 25) đồng dư -1(mod 25).
mặt khác:
A= 2^9 +2^99 =2^9(1+2^90)
mà (1+2^90) = 1 + (2^10)^9 đồng dư 1 -1=0 (mod 25)
=> 2^9 +2^99 đồng dư 0 (mod 25)
BSCNN của 4 và 25 =100
=> A đồng dư 0 (mod 100)
hay A chia hết cho 100.
22226 đồng dư 1 (mod7)
và 5555=6x925+5
=> 22225555 đồng dư 2222 5 (mod7)
mà 22225 = 2222 2x 22222 x 2222
22222 đồng dư 2 (mod 7) => 2222 5 đồng dư 2x2x2222 (mod 7)
=> 22225555 đồng dư với 5 (mod 7)
Tương tự có 55552222 đông dư 2 (mod 7)
Vậy => 22225555+55552222 đồng dư 5+2=7 (mod 7)
=> 22225555+55552222 đồng dư 0 (mod7)
=>đpcm
chứng tỏ rằng:
8 mũ 5+ 2 mũ 11 chia hết cho 17
69 mũ 2 - 69.5 chia hết cho 32
8 mũ 7 - 2 mũ 19 chia hết cho 14
8 mũ 5 + 2 mũ 11 = 2 mũ 3 tất cả mũ 5 + 2 mũ 11
= 2 mũ 15 + 2 mũ 11
= 2 mũ 11(2 mũ 4 + 1)
= 2 mũ 11 * 17
bài 1 không thực hiện phép nhân hãy chứng minh a, 386 - 7 x 19 không chia hết cho 19 b, 501 x 45 chia hết cho 15 c, 28 x (437 - 215) chia hết cho 14
Chứng Minh
a) 87-219 chia hết cho 14
b) 692-69.5 chia hết cho 32
c) 792+79.11 chia hết co 30
ta có :
A chia hết cho 15 nên A chia hết cho 3 và A chia hết cho 5
a)(2^2013+3^33) chia hết cho 7
b)(24^1917+14^1917) chia hết cho 19
CHỨNG TỎ RẰNG
78+79+710 CHIA HẾT CHO 57
1010-109 -108 CHIA HẾT CHO 89
6410-32`14-1613 CHIA HẾT CHO 19
Ta có 78+79+710 = 78.(1+7+72) = 78 . 57 chia hết cho 57
Ta có 1010-109-108 = 108.(102-10-1) = 108 . 89 chia hết cho 89
câu cuối cùng không biết làm
Cho B = 1 + 2 + 22 + 23 + .... + 214 + 215 . Chứng minh B không chia hết cho 7
Cho Q = 1+ 3 + 32 + 33 + .... + 319 + 320 . Chứng minh Q không chia hết cho 4
\(B=1+2+2^2+2^3+...+2^{14}+2^{15}\)
\(=1+\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+....+\left(2^{13}+2^{14}+2^{15}\right)\)
\(=1+2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{13}\left(1+2+2^2\right)\)
\(=1+\left(1+2+2^2\right)\left(2+2^4+....+2^{13}\right)\)
\(=1+7\left(2+2^4+...+2^{13}\right)\)
=> B không chia hết cho 7
\(Q=1+3+3^2+3^3+...+3^{19}+3^{20}\)
\(=1+\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{19}+3^{20}\right)\)
\(=1+3\left(1+3\right)+3^3\left(1+3\right)+...+3^{19}\left(1+3\right)\)
\(=1+\left(1+3\right)\left(3+3^3+...+3^{19}\right)\)
\(=1+4\left(3+3^3+...+3^{19}\right)\)
=> Q không chia hết cho 4