Cho S = 1+2+2^2+2^3+...+2^2016 . So sánh S với 2^2017
Cho tổng: S= 1+2+2^2+2^3+..........+2^2017.
Hãy so sánh S với 5.2^2016
Ta có : S = 1 +21+22+........+22017
2S= 2 +22+23+.......+22018
2S -S =( 2+22+23+......+22018) - (1+2+22+.......+22017)
S = 22018-1
S =22018- 1
S = 22 . 22016-1
\(\Rightarrow\)S < 5. 22016
Ta có :S= 1+ 2 + 22 + ........+ 22017
Suy ra 2S = 2 + 22 +.......+22018
Suy ra 2S -S = (2-2) + (22-22)+......+(22018 - 1)
Suy ra S=22018-1
so sánh S với 1/2 biết S = 2/3! + 3/4! + 4/5! + ... + 2016/2017!
Cho tổng: S=1+2+2^2+2^3+........+2^2017
Hãy so sánh S với 5.2^2016
Làm ơn đấy giải nhanh
Cho tổng s=1+2+22+23+...+22017
Hãy so sánh s với 5.22016
S = 1 + 2 + 22 + .... + 22017
=> 2S = 2 . ( 1 + 2 + 22 + ... + 22017 )
=> 2S = 2 + 22 + 23 + ... + 22018
=> S = ( 2 + 22 + 23 + ... + 22018 ) - ( 1 + 2 + 22 + .... + 22017 )
=> S = 22018 - 1 = 22016 . 22 - 1 = 22016 . 4 - 1
Mà 5.22016 > 22016 . 4 => 5 . 22016 > 22016 . 4 - 1
Vậy S < 5 . 22016
Bài làm :
S = 1 + 2 + 22 + .... + 22017
=> 2S = 2 . ( 1 + 2 + 22 + ... + 22017 )
=> 2S = 2 + 22 + 23 + ... + 22018
=> S = ( 2 + 22 + 23 + ... + 22018 ) - ( 1 + 2 + 22 + .... + 22017 )
=> S = 22018 - 1 = 22016 . 22 - 1 = 22016 . 4 - 1
Mà 5.22016 > 22016 . 4 => 5 . 22016 > 22016 . 4 - 1
Vậy S < 5 . 22016
Chúc bạn học tốt !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
cho tổng S=1+2+2^2+2^3+...+2^2017
Hãy so sánh S với 5.2^2016
bài này có trong kiểm tra học kì I lớp 6
S=1+2+22+23+...+22017
2S=2+22+23+24+...+22018
2S-S=(2+22+23+24+...+22018) - (1+2+22+23+...+22017)
S=22018-1
S=22016.22-1
22016.4<5.22016(vì 4<5)
=>22016.22-1<5.22016
Có S=1+2+22+23+...+22017
Hãy so sánh S và 5*22016
Cho T=2/2^1+3/2^2+....+2016/2^2015+2017/2^2016
So sánh T với 3
Cho S = 1 + 5 + 5^2 + 5^3 +...+ 5^2016 + 5^2017
a, Tím số dư trong phép chia S cho 31
b, So sánh 4S với 3^3027
S=1+5+5^2+...+5^2017
(=)S=(1+5+5^2)+...+(5^2015+5^2016+5^2017)
(=)S=1(1+5+5^2)+...+5^2015(1+5+5^2)
(=)S=1.31+...+5^2015.31
(=)S=(1+...+5^2015).31 chia het cho 31
Vay S chia het cho 31
3^3027 >4S
so sánh 2 p/s A=2015/2016+2016/2017+2017/2018 va B=2015+2016+2017/2016+2017+2018
Ta có \(B=\frac{2015+2016+2017}{2016+2017+2018}\)
\(\Leftrightarrow B=\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)
Vì
\(\frac{2015}{2016}>\frac{2015}{2016+2017+2018};\frac{2016}{2017}>\frac{2016}{2016+2017+2018};\frac{2017}{2018}>\frac{2017}{2016+2017+2018}\) nên \(\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}>\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)
Hay \(A>B\)