Tìm số tự nhiên y lớn hơn 1 biết tồn tại số tự nhiên n để:
y^2 = 1!+ 2! + 3! +.... + n!
1, n.(n+1) . (n+2) . (n+3) chia hết cho 3 và 8
2,
a) Có tồn tại số tự nhiên n để n2 + n + 2 chia hết cho 5 hay không?
b) Tìm số tự nhiên n nhỏ nhất sao cho n vừa là tổng của 5 số tự nhiên liên tiếp, vừa là tổng của 7 số tự nhiên liên tiếp
3,
Tìm số nguyên x, biết:
a) 2x - 1 là bội số của x - 3
b) 2x + 1 là ước của 3x + 2
c) (x - 4).(x + 2) + 6 không là bội của 9
d) 9 không là ước của (x - 2).(x + 5) + 11
4,
Tìm số nguyên a, b, sao cho:
a) (2a - 1).(b2 + 1) = -17
b) (3 - a).(5 - b) = 2
c) ab = 18, a + b = 11
5,
Tìm số nguyên x, sao cho:
a) A = x2 + 2021 đạt giá trị nhỏ nhất
b) B = 2022 - 20x20 - 22x22 đạt giá trị lớn nhất.
các bn giúp mình giải 1 số bài tập này nhé :
-tìm số tự nhiên n thỏa mãn :n+3 chia hết cho n-2
-tìm số tự nhiên n thỏa mãn :n+3 chia hết cho 2n -2
-tìm các số nguyên x thỏa mãn x lớn hơn hoặc bằng -21/7 và x bé hơn hoặc bằng 3
-tìm các số tự nhiên x,y thỏa mãn x-1 chia hết cho y , y-1 chia hết cho x
1.Cho n >= 2. Chứng minh rằng tồn tại các số a1<a2<a3<...<an; a nguyên dương sao cho
1/a1^2 + 1/a2^2 +...+ 1/an^2 = 1/a^2
2.Cho 7 số tự nhiên phân biệt có tổng là 100. Chứng minh tồn tại 3 số có tổng lớn hơn hoặc bằng 50
Tìm số nguyên tố p sao cho tồn tại số tự nhiên n để p=n3-n2+n-1
Có p = n^2(n - 1) + (n - 1) = (n^2 + 1)(n - 1)
Với n = 2 thì p = 5
Với mọi n > 3 thì p là hợp số
Với n < 1 thì p < hoặc = 0
Vậy p = 5 <=> n = 2
Chắc không phải Tony Spicer đoán mò đâu,,,,,,,,,mà là đoán lụi í
mình chỉ biết p=5, n=2 thui! Còn cách giải thì tịt.
tìm số nguyên tố p sao cho tồn tại số tự nhiên n để p=n^3-n^2+n-1
p=
cho bao nhiêu hộp, mỗi hộp có bao nhiêu viên bi? Biết số hộp lớn hơn 6 và nhỏ hơn 30 Bài 5. Tìm số tự nhiên n để: a) n 4 là bội của n. b) n1 là ước của n 5. c) 2 2 n là bội của n3. d*) 2 –1 n là ước của 3 2. n Bài 6. Tìm số tự nhiên n để a) 17.n là số nguyên tố. b) n n 2 . 4 là số nguyên t cần gấp
Tìm số nguyên tố p sao cho tồn tại số tự nhiên n để p=n3- n2 +n - 1
p = n3 - n2 + n - 1 = (n3 - n2) + (n - 1) = n2(n - 1) + (n - 1) = (n2 + 1)(n - 1)
Để p là số nguyên tố ta xét các trường hợp:
+) Nếu n - 1 = 1 => n = 2
=> p = (22 + 1)(2 - 1) = 5.1 = 5 là số nguyên tố.( thỏa mãn )
+) Nếu n > 3 => n - 1 > 2
và n2 + 1 > 10
=> p có nhiều hơn 2 ước => p là hợp số (loại)
Vậy n = 2 thì p là số nguyên tố
Cho mình 1` đúng nha
Bài 1 : Cho đa thức : P(x) = x2 + 2mx + m2
Q(x) = x2 + ( 2m + 1 )x m2
Tìm m biết P(1) = Q(-1)
Bài 2 : a) Tìm x , y thuộc Z biết : 25 - y2 = 8.( x-2009 )2
b) Có tồn tại số tự nhiên n nào để 2002 + n^2 là số chính phương không ?
Bài 3 : Tìm số tự nhiên có 3 chữ số , biết rằng số đó là bội của 72 và các chữ số của nó nếu xếp từ nhỏ đến lớn thì tỷ lệ với 1 ; 2 ; 3
2b nhé bạn!
Giả sử 2002+n2 là số chính phương m2
Hiển nhiên 2002 chia cho 4 dư 2
Ta luôn biết số chính phương chỉ có dạng 4k hoặc 4k+1 (*)
Nếu m2 dạng 4kThì n2 dạng 4k+2 thì theo (*) đây không là số chính phương
Nếu m2 dạng 4k+1Thì n2 dạng 4k+3 thì theo (*) ta lại thấy đây không là số chính phương
Vậy không tồn tại n để 2002+n2 là số chính phương
1. Tìm các số nguyên x, y biết rằng \(\frac{x}{y}=\frac{7}{y}\)và x<y<0
2. Có tồn tại số tự nhiên n nào để 2 phân số \(\frac{7n-1}{4}và\frac{5n+3}{12}\)
đồng thời là các số tự nhiên