CMR
a) \(12^{2000}-2^{1000}\)chia hết cho 10
b) \(2011^{2013}+2013^{2011}\)chia hết cho 2012
CMR:
a)122000-21000 chia hết cho 10
b)20112013+20132011 chia hết cho 2012
a) bài này xét chữ số tận cùng nhé
\(12^{2000}-2^{1000}=\left(2^2\right)^{1000}-\left(2^2\right)^{500}=4^{1000}-4^{500}=\left(...6\right)-\left(...6\right)=\left(...0\right)\) chia hết cho 10
=>122000-21000 chia hết cho 10 (đpcm)
b) chưa nghĩ ra :(
Cmr 10^2010-1 chia het cho 99
3^1930+2^1930 chia het cho 13
(2^10+1)^2010 chia het cho 25^2010
(30^4)^1975×15^1870×4^935-(7^5)^1954. Chia hết cho 23
12^2000-2^1000 chia hết cho 10
2011^2013+2013^2011 chia het cho 2012
Chứng minh
a) 2^1000-1 chia hết cho 3
b) 19^45+19^30 chia hết cho 20
Bài 13 tìm số trong phép chia của số
a)A=48^15 cho cho 7
b) B=2011^2012 chia cho 7
c)C=2013^2011+2015^2013 chia cho 9
Chứng minh
a) \(2\equiv-1\left(mod3\right)\)
\(\Rightarrow2^{1000}\equiv\left(-1\right)^{1000}\equiv1\left(mod3\right)\Rightarrow2^{1000}-1\equiv0\left(mod3\right)\Rightarrowđpcm\)
b) \(19\equiv-1\left(mod20\right)\)
\(\Rightarrow19^{45}\equiv\left(-1\right)^{45}\equiv1\left(mod20\right);19^{30}\equiv\left(-1\right)^{30}\equiv1\left(mod20\right)\)
\(\Rightarrow19^{45}+19^{30}\equiv0\left(mod20\right)\Rightarrowđpcm\)
CM \(2011^{2013}+2013^{2011}\)chia hết cho 2012
Chứng minh rằng:
20112012-20132012 chia hết cho 2 và 5
vì số có chữ số tận cùng là 0 thì sẽ chia hết cho 2 và 5
vậy ta xét chữ số tận cùng của phép tính 20112012 - 20132012
20112012 có chữ số tận cùng là: 12012 = 14.503 = ( ....1)
20132012 có chữ số tận cùng là : 32012 = 34.503 = (....1)
20112012 - 20132012 = (....1) - (.....1) = (.....0)
vì kết quả của phép tính trên có chữ số tận cùng là 0 nên:
20112012 - 20132012 chia hết cho 2 và 5
chứng minh rằng A=2011^n+2012^n+2013^n (n thuộc N) chia hết cho 2
2011n luôn lẻ
2012n luôn chẵn
2013n luôn lẻ
=> 2011n + 2012n + 2013n luôn chẵn
=> Chia hết cho 2
=> ĐPCM
CMR:2011\(^{2012}\)-2013\(^{^{ }2012}\)chia hết cho 2 và 5
2011^2012 - 2013^2012
= (...1)^2012 - (...3)^2012
= (....1) - (....1)
= (....0) chia hết cho 10 nên chia hết cho 2 và 5 do (2;5)=1
CMR :a)(2^4n-1) chia hết cho 5
b)(9^2n+1) chia hết cho 5 c) (2011^2012+2013^2014) chia hết cho 2
d)(2003^2007+2007^2003) chia hết cho 2;5
chứng minh rằng 2013^2014+2011^2012 chia hết cho 10
ta có: 3^2014=(3^2)^1007=9^1007=......9
1^2012=.....1
=>2013^2014+2011^2012=....9+....1=........0 chia hết 10
vậy 2013^2014+2011^2012 chia hết 10