Tính giá trị biểu thức :
A= \(7xy+x^2=y\) với \(\left|x\right|=\frac{1}{2}\)
Helppp ;_;
a) Tìm x biết : | x - 2014 | + | x - 2015 | + | x - 2016 | = 2
b) Tính giá trị của biểu thức M =15x3y + 7xy với x, y thỏa mãn : \(\left(3x-1\right)^{2016}+\left(5y-3\right)^{2018}\le0\)
(3x - 1)^2016 + (5y - 3)^2016 < 0 (1)
có (3x - 1)^2016 > 0
(5y - 3)^2018 > 0
=> (3x-1)^2016 + (5y - 3)^2018 > 0 và (1)
=> (3x - 1)^2016 + (5y - 3)^2016 = 0
=> 3x - 1 = 0 và 5y - 3 = 0
=> x = 1/23 và y = 3/5
1.Rút gọn rối tính giá trị biểu thức sau với \(x=1\) ; \(y=-\frac{1}{2}\)
A=\(\left(\frac{x}{xy-y^2}+\frac{2x-y}{xy-x^2}\right):\left(\frac{1}{x}+\frac{1}{y}\right)\)
2. Chứng minh rằng giá trị của biểu thức sau bằng 1 với mọi giá trị \(x\ne0;x\ne-1\)
B=\(\left(\frac{x+1}{x}\right)^2:\left[\frac{x^2+1}{x^2}+\frac{2}{x+1}\left(\frac{1}{x}+1\right)\right]\)
Cho biểu thức:
\(P=\frac{\left(x^2+y\right)\left(y+\frac{1}{4}\right)+\frac{3}{4}\left(y+\frac{1}{3}\right)+x^2y^2}{\left(x^2-y\right)\left(1-y\right)+x^2y^2+1}\)
a) Rút gọn P
b) Tính giá trị của biểu thức P với các số nguyên dương x;y thỏa mãn: 1! + 2! +...+ x! = y2
1/Cho a,b,c thỏa mãn \(\frac{2}{\left(x^2+1\right)\left(x-1\right)}=\frac{ax+b}{x^2+1}+\frac{c}{x-1}\)
Tính giá trị biểu thức M=\(\frac{a^{2017}+b^{2018}+c^{2019}}{a^{2017}b^{2018}c^{2019}}\)
2/Cho x,y,z≠0 và x+y+z=2008
Tính giá trị biểu thức P=\(\frac{x^3}{\left(x-y\right)\left(x-z\right)}+\frac{y^3}{\left(y-x\right)\left(y-z\right)}+\frac{z^3}{\left(z-y\right)\left(z-x\right)}\)
1. Cho biểu thức A = \(\left(\frac{x-\sqrt{x}}{\sqrt{x}-1}+1\right):\left(\frac{x+2\sqrt{x}}{\sqrt{x}+2}-1\right)\)
a) Rút gọn biểu thức A
b) Tính giá trị của A khi x=9
c) Tìm x để A=5
d) Tìm x để A<1
e) Tìm giá trị nguyên của x để A nhận giá trị nguyên
2. Cho hai biểu thức P = \(\frac{\sqrt{x}+1}{\sqrt{x}-1}\) và A = \(\left(\frac{x-2}{x+2\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right).\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
a) Tính giá trị biểu thức P khi x = \(\frac{1}{4}\)
b) Rút gọn biểu thức A
c) So sánh giá trị biểu thức A với 1
d) Tìm giá trị của x để \(\frac{P}{A}\left(x-1\right)=0\)
1. Cho biểu thức A = \(\left(\frac{x-\sqrt{x}}{\sqrt{x}-1}+1\right):\left(\frac{x+2\sqrt{x}}{\sqrt{x}+2}-1\right)\)
a) Rút gọn biểu thức A
b) Tính giá trị của A khi x=9
c) Tìm x để A=5
d) Tìm x để A<1
e) Tìm giá trị nguyên của x để A nhận giá trị nguyên
2. Cho hai biểu thức P = \(\frac{\sqrt{x}+1}{\sqrt{x}-1}\) và A = \(\left(\frac{x-2}{x+2\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right).\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
a) Tính giá trị biểu thức P khi x = \(\frac{1}{4}\)
b) Rút gọn biểu thức A
c) So sánh giá trị biểu thức A với 1
d) Tìm giá trị của x để \(\frac{P}{A}\left(x-1\right)=0\)
1. Tính giá trị biểu thức:\(A=xy^3+5xy^3+\left(-7xy^3\right)\)tại x = 2 ; y = -1
2. Tìm \(x,y\inℕ\)biết: \(36-y^2=8\left(x-2010\right)^2\)
Cho biểu thức :
\(A=\left(\frac{x}{x^2-4}+\frac{2}{2-x}+\frac{1}{x+2}\right)\div\left(x-2+\frac{10-x^2}{x+2}\right)\)
a) Rút gọc biểu thức A
b) Tính giá trị biểu thức A tại x, biết \(\left|x\right|=\frac{1}{2}\)
c) Tính giá trị của x để A < 0
c/đễ A<0 <=> -1/X-2 <0 <=> x-2<0 <=>x<2
a) \(A=\left(\frac{x}{x^2-4}+\frac{2}{2-x}+\frac{1}{x+2}\right):\left(x-2+\frac{10-x^2}{x+2}\right)\)
\(ĐKXĐ:x\ne\pm2\)
\(A=\left(\frac{x}{x^2-4}-\frac{2}{x-2}+\frac{1}{x+2}\right):\left(\frac{x^2-4}{x+2}+\frac{10-x^2}{x+2}\right)\)
\(A=\left(\frac{x}{x^2-4}-\frac{2\left(x+2\right)}{x^2-4}+\frac{x-2}{x^2-4}\right):\frac{6}{x+2}\)
\(A=\frac{x-2\left(x+2\right)+x-2}{x^2-4}:\frac{6}{x+2}\)
\(A=\frac{-6}{x^2-4}:\frac{6}{x+2}\)
\(A=\frac{-6}{\left(x-2\right)\left(x+2\right)}\times\frac{x+2}{6}\)
\(A=\frac{-1}{x-2}\)
b) Ta có \(\left|x\right|=\frac{1}{2}\Leftrightarrow x=\pm\frac{1}{2}\)
TH1: Nếu \(x=\frac{1}{2}\)thì:
\(A=\frac{-1}{\frac{1}{2}-2}=\frac{-1}{\frac{-3}{2}}=-1\times\frac{2}{-3}=\frac{2}{3}\)
TH2: nếu \(x=\frac{-1}{2}\)thì:
\(A=\frac{-1}{\frac{-1}{2}-2}=\frac{-1}{\frac{-5}{2}}=-1\times\frac{2}{-5}=\frac{2}{5}\)
Vậy tại \(\left|x\right|=\frac{1}{2}\)thì \(A=\left\{\frac{2}{3};\frac{2}{5}\right\}\)
c) Để \(A< 0\)thì \(\frac{-1}{x-2}< 0\)
\(\Leftrightarrow x-2>0\)
\(\Leftrightarrow x>2\)
Vậy để \(A< 0\)thì \(x>2\)
cho biểu thức A = \(\left(\frac{2x}{x-3}-\frac{x-1}{x+3}+\frac{x^2+1}{9-x^2}\right):\left(1-\frac{x-1}{x+3}\right)\)
a) rút gọn biểu thức
b) tính giá trị biểu thức A biết | x - 5 | = 2
c) tìm giá trị nguyên của x để biểu thức A nhận giá trị nguyên
cho biểu thức A = \(\left(\frac{2x}{x-3}-\frac{x+1}{x+3}+\frac{x^2+1}{9-x^2}\right):\left(1-\frac{x-1}{x+3}\right)\)
a) rút gọn biểu thức
b) tính giá trị biểu thức A biết | x - 5 | = 2
c) tìm giá trị nguyên cảu x để biếu thức A nhận giá trị nguyên
ĐKXĐ : \(x\ne\pm3\)
a) \(A=\left(\frac{2x}{x-3}-\frac{x+1}{x+3}+\frac{x^2+1}{9-x^2}\right):\left(1-\frac{x-1}{x+3}\right)\)
\(A=\left(\frac{-2x\left(3+x\right)}{\left(3-x\right)\left(3+x\right)}-\frac{\left(x+1\right)\left(3-x\right)}{\left(x+3\right)\left(3-x\right)}+\frac{x^2+1}{\left(3-x\right)\left(3+x\right)}\right):\left(\frac{x+3}{x+3}-\frac{x-1}{x+3}\right)\)
\(A=\left(\frac{-2x^2-6x+x^2-2x-3+x^2+1}{\left(3-x\right)\left(3+x\right)}\right):\left(\frac{x+3-x+1}{x+3}\right)\)
\(A=\left(\frac{-8x-2}{\left(3-x\right)\left(3+x\right)}\right):\left(\frac{4}{x+3}\right)\)
\(A=\frac{-2\left(4x+1\right)\left(x+3\right)}{\left(3-x\right)\left(3+x\right)4}\)
\(A=\frac{-\left(4x+1\right)}{2\left(3-x\right)}\)
\(A=\frac{4x+1}{2\left(x-3\right)}\)
b) \(\left|x-5\right|=2\)
\(\Rightarrow\orbr{\begin{cases}x-5=2\\x-5=-2\end{cases}\Rightarrow\orbr{\begin{cases}x=7\\x=3\end{cases}}}\)
Mà ĐKXĐ x khác 3 => ta xét x = 7
\(A=\frac{4\cdot7+1}{2\cdot\left(7-3\right)}=\frac{29}{8}\)
c) Để A nguyên thì 4x + 1 ⋮ 2x - 3
<=> 4x - 6 + 7 ⋮ 2x - 3
<=> 2 ( 2x - 3 ) + 7 ⋮ 2x - 3
Mà 2 ( 2x - 3 ) ⋮ ( 2x - 3 ) => 7 ⋮ 2x - 3
=> 2x - 3 thuộc Ư(7) = { 1; -1; 7; -7 }
=> x thuộc { 2; 1; 5; -2 }
Vậy .....
a) ĐKXĐ: \(x\ne\pm3\)
\(A=\frac{2x\left(x+3\right)-\left(x+1\right)\left(x-3\right)-\left(x^2+1\right)}{x^2-9} : \frac{x+3-\left(x-1\right)}{x+3}\)
\(A=\frac{2x^2-6x-x^2+2x+3-x^2-1}{x^2-9} : \frac{4}{x+3}\)
\(A=\frac{-4x+2}{x^2+9} : \frac{4}{x+3}\)
\(A=\frac{2\left(1-2x\right)}{\left(x+3\right)\left(x-3\right)}\cdot\frac{x+3}{4}=\frac{1-2x}{2x-6}\)
b)
Có 2 trường hợp:
T.Hợp 1:
\(x-5=2\Leftrightarrow x=7\)(thỏa mã ĐKXĐ)
thay vào A ta được: A=\(-\frac{13}{8}\)
T.Hợp 2:
\(x-5=-2\Leftrightarrow x=3\)(Không thỏa mãn ĐKXĐ)
Vậy không tồn tại giá trị của A tại x=3
Vậy với x=7 thì A=-13/8
c)
\(\frac{1-2x}{2x-6}=\frac{1-\left(2x-6\right)-6}{2x-6}=-1-\frac{5}{2x-6}\)
Do -1 nguyên, để A nguyên thì \(-\frac{5}{2x-6}\inℤ\)
Để \(-\frac{5}{2x-6}\inℤ\)thì \(2x-6\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Do 2x-6 chẵn, để x nguyên thì 2x-6 là 1 số chẵn .
Vậy không có giá trị nguyên nào của x để A nguyên
Câu 1:
\(P=\sqrt{a\left(a+b+c\right)+bc}+\sqrt{b\left(a+b+c\right)+ac}+\sqrt{c\left(a+b+c\right)+ab}\)
\(P=\sqrt{\left(a+b\right)\left(a+c\right)}+\sqrt{\left(b+a\right)\left(b+c\right)}+\sqrt{\left(c+a\right)\left(c+b\right)}\)
Áp dụng BĐT \(\sqrt{xy}\le\frac{x+y}{2}\)
\(P\le\frac{a+b+a+c}{2}+\frac{b+a+b+c}{2}+\frac{c+a+c+b}{2}\)
\(=\frac{2a+b+c}{2}+\frac{2b+a+c}{2}+\frac{2c+a+b}{2}\)
\(=\frac{\left(2a+a+a\right)+\left(2b+b+b\right)+\left(2c+c+c\right)}{2}\)
\(=\frac{4\cdot\left(a+b+c\right)}{2}=\frac{4\cdot2}{2}=4\)
Vậy \(maxP=4\Leftrightarrow a=b=c=\frac{2}{3}\)