biet x>2016 và y<2017 so sanh x va y lop 4
Tim x,y,z biet (x +1)^2016 + (2y - 1)^2016 + |x + 2y - z |^2017
tim x,y biet (x+y)/2014=xy/2015=(x-y)/2016
Ta có: \(\frac{x+y}{2014}\)=\(\frac{x-y}{2016}\)
=>\(2016x+2016y=2014x-2014y\)
=> \(2x=-4030y\)
=>\(x=-2015y\)
\(Thay\)\(x=-2015\)vào \(\frac{x+y}{2014}=\frac{xy}{2015}\)ta được
\(\frac{-2015+y}{2014}=\frac{-2015y}{2015}\)
\(\frac{-2014y}{2014}=\frac{-2015y^2}{2015}\)
\(-y=-y^2\)
=>\(y-y^2=0\)
\(y\).(\(1-y\))\(=0\)
\(=>\orbr{\begin{cases}y=0\\1-y=0\end{cases}}=>\orbr{\begin{cases}y=0\\y=1\end{cases}}\)
TH1 :\(y=0=>x.y=-2015.0=0\)
TH2 :\(y=1=>x.y=-2015.1=-2015\)
Ta có: \(\frac{x+y}{2014}\ne\frac{x-y}{2016}\)
\(\Leftrightarrow2016x+2016y=2014x-2014y\)
\(\Leftrightarrow2x=-4030y\)
\(\Leftrightarrow x=-2015y\)
Thay \(x=-2015y\)vào \(\frac{x+y}{2014}=\frac{xy}{2015}\)ta được:
\(\Leftrightarrow\frac{-2015+y}{2014}=\frac{-2015y}{2015}\)
\(\Leftrightarrow\frac{-2014y}{2014}=\frac{-2015y^2}{2015}\)
\(\Leftrightarrow-y=-y^2\)
\(\Leftrightarrow y-y^2=0\)
\(\Leftrightarrow y\left(1-y\right)=0\)
\(\Rightarrow\orbr{\begin{cases}y=0\\1-y=0\end{cases}}\Rightarrow\orbr{\begin{cases}y=0\\y=1\end{cases}}\)
Trường hợp \(y=0\):
\(y=0\Rightarrow x.y=-2015.0=0\)
Trường hợp \(y=1\):
\(y=1\Rightarrow x.y=-2015.1=-2015\)
tim x va y biet (x+2015)^2016 +/y-2017/=0
Ta có: (x+2015)^2016>=0(với mọi x)
|y-2017|>=0(với mọi y)
Do đó, (x+2015)^2016+|y-2017|>=0(với mọi x,y)
mà (x+2015)^2016+|y-2017|=0
nên (x+2015)^2016=0 và |y-2017|=0
x+2015=0 y-2017=0
x=0-2015 y=0+2017
x=-2015 y=2017
Vậy x=-2015 và y=2017 thì x,y thỏa mãn đề
Tim x, y nguyen biet: 5-y^2= 4(x-2016)^2
tim x,y thuoc N biet 59x+26y=2016 (x,y nguyen to)
Biet x > 2016 va y<2017.Hay so sanh x va y
Nếu là số có 1 chữ số thì biểu thức có giá trị lớn nhất là
tim x,y thuoc N biet 59x+26y=2016 (x,y nguyen to)
tim (x;y) biet (x+2y -3)^2016 + |2x + 3y - 5| =0
=>(x+2y-3)^2016=0 hoặc |2x+3y-5|=0
x+2y=3 hoặc 2x+3y=5
<=>x=3-2y
Ta có 2x+3y=5=>6-4y+3y=5
6-y=5
y=1
Ta có x+2y=3=>x+2*1=3
x+2=3
x=1
Vậy (x;y) =(1;1)
tìm x,y biet lx-y+3l+2015(2y-3)2016=0
Vì |x-y+3| luôn lớn hơn hoặc bằng 0 với mọi x,y
2015(2y-3)2016 lớn hơn hoặc bằng 0 với mọi x,y
=> |x-y+3|=0 và 2015(2y-3)2016=0
<=> x-y+3=0 và 2y-3=0
<=>x-y+3=0 và y=3/2
Thay vào bạn sẽ tìm đc x
Nhớ k mk nha